{"title":"Cell type-specific effects of p27<sup>KIP1</sup> loss on retinal development.","authors":"Mariko Ogawa, Fuminori Saitoh, Norihiro Sudou, Fumi Sato, Hiroki Fujieda","doi":"10.1186/s13064-017-0094-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cyclin-dependent kinase (CDK) inhibitors play an important role in regulating cell cycle progression, cell cycle exit and cell differentiation. p27<sup>KIP1</sup> (p27), one of the major CDK inhibitors in the retina, has been shown to control the timing of cell cycle exit of retinal progenitors. However, the precise role of this protein in retinal development remains largely unexplored. We thus analyzed p27-deficient mice to characterize the effects of p27 loss on proliferation, differentiation, and survival of retinal cells.</p><p><strong>Methods: </strong>Expression of p27 in the developing and mature mouse retina was analyzed by immunohistochemistry using antibodies against p27 and cell type-specific markers. Cell proliferation and differentiation were examined in the wild-type and p27-deficient retinas by immunohistochemistry using various cell cycle and differentiation markers.</p><p><strong>Results: </strong>All postmitotic retinal cell types expressed p27 in the mouse retinas. p27 loss caused extension of the period of proliferation in the developing retinas. This extra proliferation was mainly due to ectopic cell cycle reentry of differentiating cells including bipolar cells, Müller glial cells and cones, rather than persistent division of progenitors as previously suggested. Aberrant cell cycle activity of cones was followed by cone death resulting in a significant reduction in cone number in the mature p27-deficient retinas.</p><p><strong>Conclusions: </strong>Although expressed in all retinal cell types, p27 is required to maintain the quiescence of specific cell types including bipolar cells, Müller glia, and cones while it is dispensable for preventing cell cycle reentry in other cell types.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":" ","pages":"17"},"PeriodicalIF":2.5000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-017-0094-1","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13064-017-0094-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Background: Cyclin-dependent kinase (CDK) inhibitors play an important role in regulating cell cycle progression, cell cycle exit and cell differentiation. p27KIP1 (p27), one of the major CDK inhibitors in the retina, has been shown to control the timing of cell cycle exit of retinal progenitors. However, the precise role of this protein in retinal development remains largely unexplored. We thus analyzed p27-deficient mice to characterize the effects of p27 loss on proliferation, differentiation, and survival of retinal cells.
Methods: Expression of p27 in the developing and mature mouse retina was analyzed by immunohistochemistry using antibodies against p27 and cell type-specific markers. Cell proliferation and differentiation were examined in the wild-type and p27-deficient retinas by immunohistochemistry using various cell cycle and differentiation markers.
Results: All postmitotic retinal cell types expressed p27 in the mouse retinas. p27 loss caused extension of the period of proliferation in the developing retinas. This extra proliferation was mainly due to ectopic cell cycle reentry of differentiating cells including bipolar cells, Müller glial cells and cones, rather than persistent division of progenitors as previously suggested. Aberrant cell cycle activity of cones was followed by cone death resulting in a significant reduction in cone number in the mature p27-deficient retinas.
Conclusions: Although expressed in all retinal cell types, p27 is required to maintain the quiescence of specific cell types including bipolar cells, Müller glia, and cones while it is dispensable for preventing cell cycle reentry in other cell types.
期刊介绍:
Neural Development is a peer-reviewed open access, online journal, which features studies that use molecular, cellular, physiological or behavioral methods to provide novel insights into the mechanisms that underlie the formation of the nervous system.
Neural Development aims to discover how the nervous system arises and acquires the abilities to sense the world and control adaptive motor output. The field includes analysis of how progenitor cells form a nervous system during embryogenesis, and how the initially formed neural circuits are shaped by experience during early postnatal life. Some studies use well-established, genetically accessible model systems, but valuable insights are also obtained from less traditional models that provide behavioral or evolutionary insights.