Numerische Mathematik最新文献

筛选
英文 中文
The numerical methods for the coupled fluid flow under the leak interface condition of the friction-type 摩擦型泄漏界面条件下耦合流体流动的数值计算方法
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2023-04-01 DOI: 10.1007/s00211-023-01348-w
Guanyu Zhou, F. Jing, Takahito Kashiwabara
{"title":"The numerical methods for the coupled fluid flow under the leak interface condition of the friction-type","authors":"Guanyu Zhou, F. Jing, Takahito Kashiwabara","doi":"10.1007/s00211-023-01348-w","DOIUrl":"https://doi.org/10.1007/s00211-023-01348-w","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45953075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A posteriori error analysis and adaptivity for high-dimensional elliptic and parabolic boundary value problems 高维椭圆型和抛物型边值问题的后验误差分析及自适应性
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2023-04-01 DOI: 10.1007/s00211-023-01350-2
Fabian Merle, A. Prohl
{"title":"A posteriori error analysis and adaptivity for high-dimensional elliptic and parabolic boundary value problems","authors":"Fabian Merle, A. Prohl","doi":"10.1007/s00211-023-01350-2","DOIUrl":"https://doi.org/10.1007/s00211-023-01350-2","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47178170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rate of convergence and stability analysis of a modified fixed pivot technique for a fragmentation equation 一类碎裂方程修正固定支点技术的收敛速度和稳定性分析
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2023-02-04 DOI: 10.1007/s00211-023-01344-0
Jitraj Saha, Mehakpreet Singh
{"title":"Rate of convergence and stability analysis of a modified fixed pivot technique for a fragmentation equation","authors":"Jitraj Saha, Mehakpreet Singh","doi":"10.1007/s00211-023-01344-0","DOIUrl":"https://doi.org/10.1007/s00211-023-01344-0","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44862131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On the spectrum of the double-layer operator on locally-dilation-invariant Lipschitz domains 局部膨胀不变Lipschitz域上双层算子的谱
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2023-01-28 DOI: 10.1007/s00211-023-01353-z
S. Chandler-Wilde, R. Hagger, Karl-Mikael Perfekt, J. Virtanen
{"title":"On the spectrum of the double-layer operator on locally-dilation-invariant Lipschitz domains","authors":"S. Chandler-Wilde, R. Hagger, Karl-Mikael Perfekt, J. Virtanen","doi":"10.1007/s00211-023-01353-z","DOIUrl":"https://doi.org/10.1007/s00211-023-01353-z","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46005607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Goal-oriented adaptive finite element methods with optimal computational complexity. 计算复杂度最优的目标导向自适应有限元方法
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2023-01-01 Epub Date: 2022-11-16 DOI: 10.1007/s00211-022-01334-8
Roland Becker, Gregor Gantner, Michael Innerberger, Dirk Praetorius
{"title":"Goal-oriented adaptive finite element methods with optimal computational complexity.","authors":"Roland Becker, Gregor Gantner, Michael Innerberger, Dirk Praetorius","doi":"10.1007/s00211-022-01334-8","DOIUrl":"10.1007/s00211-022-01334-8","url":null,"abstract":"<p><p>We consider a linear symmetric and elliptic PDE and a linear goal functional. We design and analyze a goal-oriented adaptive finite element method, which steers the adaptive mesh-refinement as well as the approximate solution of the arising linear systems by means of a contractive iterative solver like the optimally preconditioned conjugate gradient method or geometric multigrid. We prove linear convergence of the proposed adaptive algorithm with optimal algebraic rates. Unlike prior work, we do not only consider rates with respect to the number of degrees of freedom but even prove optimal complexity, i.e., optimal convergence rates with respect to the total computational cost.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10536358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double exponential quadrature for fractional diffusion. 分数扩散的双指数正交。
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2023-01-01 DOI: 10.1007/s00211-022-01342-8
Alexander Rieder
{"title":"Double exponential quadrature for fractional diffusion.","authors":"Alexander Rieder","doi":"10.1007/s00211-022-01342-8","DOIUrl":"https://doi.org/10.1007/s00211-022-01342-8","url":null,"abstract":"<p><p>We introduce a novel discretization technique for both elliptic and parabolic fractional diffusion problems based on double exponential quadrature formulas and the Riesz-Dunford functional calculus. Compared to related schemes, the new method provides faster convergence with fewer parameters that need to be adjusted to the problem. The scheme takes advantage of any additional smoothness in the problem without requiring a-priori knowledge to tune parameters appropriately. We prove rigorous convergence results for both, the case of finite regularity data as well as for data in certain Gevrey-type classes. We confirm our findings with numerical tests.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9472166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics 动态不可压缩磁流体力学混合FEM的新分析
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2022-12-29 DOI: 10.1007/s00211-022-01341-9
Huadong Gao, W. Qiu, Weiwei Sun
{"title":"New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics","authors":"Huadong Gao, W. Qiu, Weiwei Sun","doi":"10.1007/s00211-022-01341-9","DOIUrl":"https://doi.org/10.1007/s00211-022-01341-9","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45765375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Interpolation on the cubed sphere with spherical harmonics 具有球谐波的三次球上的插值
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2022-12-28 DOI: 10.1007/s00211-022-01340-w
Jean-Baptiste Bellet, M. Brachet, J. Croisille
{"title":"Interpolation on the cubed sphere with spherical harmonics","authors":"Jean-Baptiste Bellet, M. Brachet, J. Croisille","doi":"10.1007/s00211-022-01340-w","DOIUrl":"https://doi.org/10.1007/s00211-022-01340-w","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45406415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Two discretisations of the time-dependent Bingham problem 时变Bingham问题的两个离散化
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2022-12-26 DOI: 10.1007/s00211-022-01338-4
C. Carstensen, M. Schedensack
{"title":"Two discretisations of the time-dependent Bingham problem","authors":"C. Carstensen, M. Schedensack","doi":"10.1007/s00211-022-01338-4","DOIUrl":"https://doi.org/10.1007/s00211-022-01338-4","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44745004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A semi-Lagrangian scheme for Hamilton–Jacobi–Bellman equations with oblique derivatives boundary conditions 具有斜导数边界条件的Hamilton-Jacobi-Bellman方程的半拉格朗日格式
IF 2.1 2区 数学
Numerische Mathematik Pub Date : 2022-12-24 DOI: 10.1007/s00211-022-01336-6
Elisa Calzola, E. Carlini, Xavier Dupuis, Francisco J. Silva
{"title":"A semi-Lagrangian scheme for Hamilton–Jacobi–Bellman equations with oblique derivatives boundary conditions","authors":"Elisa Calzola, E. Carlini, Xavier Dupuis, Francisco J. Silva","doi":"10.1007/s00211-022-01336-6","DOIUrl":"https://doi.org/10.1007/s00211-022-01336-6","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42971572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信