Goal-oriented adaptive finite element methods with optimal computational complexity.

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Numerische Mathematik Pub Date : 2023-01-01 Epub Date: 2022-11-16 DOI:10.1007/s00211-022-01334-8
Roland Becker, Gregor Gantner, Michael Innerberger, Dirk Praetorius
{"title":"Goal-oriented adaptive finite element methods with optimal computational complexity.","authors":"Roland Becker, Gregor Gantner, Michael Innerberger, Dirk Praetorius","doi":"10.1007/s00211-022-01334-8","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a linear symmetric and elliptic PDE and a linear goal functional. We design and analyze a goal-oriented adaptive finite element method, which steers the adaptive mesh-refinement as well as the approximate solution of the arising linear systems by means of a contractive iterative solver like the optimally preconditioned conjugate gradient method or geometric multigrid. We prove linear convergence of the proposed adaptive algorithm with optimal algebraic rates. Unlike prior work, we do not only consider rates with respect to the number of degrees of freedom but even prove optimal complexity, i.e., optimal convergence rates with respect to the total computational cost.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"153 1","pages":"111-140"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-022-01334-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a linear symmetric and elliptic PDE and a linear goal functional. We design and analyze a goal-oriented adaptive finite element method, which steers the adaptive mesh-refinement as well as the approximate solution of the arising linear systems by means of a contractive iterative solver like the optimally preconditioned conjugate gradient method or geometric multigrid. We prove linear convergence of the proposed adaptive algorithm with optimal algebraic rates. Unlike prior work, we do not only consider rates with respect to the number of degrees of freedom but even prove optimal complexity, i.e., optimal convergence rates with respect to the total computational cost.

Abstract Image

计算复杂度最优的目标导向自适应有限元方法
我们考虑了线性对称椭圆 PDE 和线性目标函数。我们设计并分析了一种以目标为导向的自适应有限元方法,该方法通过一种收缩迭代求解器(如优化预处理共轭梯度法或几何多网格)来引导自适应网格细化以及线性系统的近似求解。我们以最优代数率证明了所提出的自适应算法的线性收敛性。与之前的工作不同,我们不仅考虑了与自由度数量相关的速率,甚至证明了最佳复杂性,即与总计算成本相关的最佳收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信