{"title":"关于线性质心有理插值的数值稳定性","authors":"Chiara Fuda, R. Campagna, K. Hormann","doi":"10.1007/s00211-022-01330-y","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"152 1","pages":"787 - 788"},"PeriodicalIF":2.1000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Publisher Correction to: On the numerical stability of linear barycentric rational interpolation\",\"authors\":\"Chiara Fuda, R. Campagna, K. Hormann\",\"doi\":\"10.1007/s00211-022-01330-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"152 1\",\"pages\":\"787 - 788\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-022-01330-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-022-01330-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing