{"title":"Automatic stress analysis method for semiconductor materials based on dual-wavelength infrared photoelasticity","authors":"Quanyan He , Yitao Du , Qinghua Qin , Wei Qiu","doi":"10.1016/j.optlaseng.2024.108648","DOIUrl":"10.1016/j.optlaseng.2024.108648","url":null,"abstract":"<div><div>In this paper, an automatic method of stress analysis was proposed, based on dual-wavelength infrared photoelasticity, which was prospectively applicable to quality inspection in semiconductor manufacturing engineering. This method employed a strategy and corresponding algorithm to locate reference points by analyzing the rate of intensity change between two photoelastic images captured at dual wavelengths, relative to the material fringe constant, guiding the unwrapping process of the isoclinic value and isochromatic value maps. It enabled the full-field stress analysis without any manual intervention or any priori knowledge or information about the stress to analyze. An optic instrument was developed to realize the measurement of dual-wavelength infrared photoelasticity. Using this device, the feasibility of the proposed method was verified by quantifying the internal stress fields of different samples made in monocrystalline silicon wafers. The experimental results illustrated the full automation of the proposed method, and its high accuracy as well. Additionally, an optimized scanning scheme was further discussed to balance the efficiency and the accuracy based on the above method and device of dual-wavelength infrared photoelasticity.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108648"},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yahui Song , Xin Xu , Jixiang Wang , Lina Xing , Xin Zhang , Guohua Shi , Hong Ye
{"title":"Fluorescence spatial anisotropy of emission dipoles in an orthogonal imaging system","authors":"Yahui Song , Xin Xu , Jixiang Wang , Lina Xing , Xin Zhang , Guohua Shi , Hong Ye","doi":"10.1016/j.optlaseng.2024.108649","DOIUrl":"10.1016/j.optlaseng.2024.108649","url":null,"abstract":"<div><div>In this study, we explore the relatively unexplored spatially anisotropic fluorescence emission induced by rotationally polarized excitation light in orthogonal imaging systems, a phenomenon that is particularly pronounced in orthogonal setups compared to coaxial configurations. Despite its significance, this aspect has been largely neglected, given the prevalent use of coaxial Fluorescence Polarization Microscope (FPM) setups. Our research endeavors to bridge this gap by formulating a physical model to investigate the polarization-dependent emission of dipoles and the corresponding fluorescence signal within an orthogonal imaging configuration. Additionally, we introduce the Fluorescence Spatial Anisotropy Index (FSAI) to quantify fluorescence spatial anisotropy.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108649"},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Cheng , Helei Dong , Li Tang , Qiulin Tan , Jijun Xiong
{"title":"Dynamic characterization measurement of the circular foil heat flux sensor based on laser method","authors":"Long Cheng , Helei Dong , Li Tang , Qiulin Tan , Jijun Xiong","doi":"10.1016/j.optlaseng.2024.108642","DOIUrl":"10.1016/j.optlaseng.2024.108642","url":null,"abstract":"<div><div>In order to make the circular foil heat flux sensor meet the growing demand for dynamic heat flux monitoring in extreme environments such as hypersonic wind tunnels, a dynamic calibration platform with a high-power semiconductor laser as heat flux source is built. Combining Finite Element Analysis (FEA) and experiments to carry out relevant studies. Our findings indicate a negative correlation between the time constant and laser power/pulse width, whereas the rise time is positively correlated with the laser pulse width. And they are all positively correlated with the coating thickness. Importantly, FEA revealed the independence of laser parameters from the time constant. Additionally, when the laser pulse width is approximately one order of magnitude less than the time constant of the sensor, it can be deemed an ideal pulse excitation. In the experiment, the maximum heat flow density was applied up to 3.49 MW/m<sup>2</sup>, the minimum ideal pulse laser width can reach 1ms, the minimum time constant was measured to be 63 ms, and the minimum rise time was 12 ms. This research serves as a valuable reference for dynamically calibrating sensors using the laser method.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108642"},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Xiang , Zebin Zhou , Wenlei Yang , Huihua Wang , Pan Gao , Mingming Xiao , Jinwen Zhang , Xing Zhu
{"title":"A fusion framework with multi-scale convolution and triple-branch cascaded transformer for underwater image enhancement","authors":"Dan Xiang , Zebin Zhou , Wenlei Yang , Huihua Wang , Pan Gao , Mingming Xiao , Jinwen Zhang , Xing Zhu","doi":"10.1016/j.optlaseng.2024.108640","DOIUrl":"10.1016/j.optlaseng.2024.108640","url":null,"abstract":"<div><div>Acquiring high-quality underwater images is critical for various marine applications. However, light absorption and scattering problems in underwater environments severely degrade image quality. To address these issues, this study proposes a Fusion Framework with Multi-Scale Convolution and Triple-Branch Cascaded Transformer for Underwater Image Enhancement(FMTformer). This innovative framework incorporates multi-scale convolution and three-branch cascade transformer to enhance underwater images effectively. The FMTformer framework adds in the Multi-Conv Multi-Scale Fusion (MCMF) mechanism, which utilizes a spectrum of convolutional kernels to adeptly extract multi-scale features from both the base and detail layers of the decomposed image. This method ensures the capture of both high- and low-frequency information. Furthermore, this research introduces the Tri-Branch Self-Attention Transformer (TBSAT), designed to get cross-dimensional interactions via its Tri-Branch structure, significantly refines image processing quality. The framework also embedded the Value Reconstruct Cascade Transformer (VRCT), which refines feature map representation through mixed convolution, yielding enriched attention maps. Empirical evidence indicates that FMTformer achieves parity with the state-of-the-art in both subjective and objective evaluation metrics, outperforming extant methodologies.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108640"},"PeriodicalIF":3.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Terahertz switchable metasurface for polarization conversion and hologram manipulation","authors":"Ziyin Xu, Jinxin Yang, Zhengyong Song","doi":"10.1016/j.optlaseng.2024.108641","DOIUrl":"10.1016/j.optlaseng.2024.108641","url":null,"abstract":"<div><div>Polarization control is fundamental to the field of optical imaging, and the incorporation of metasurface enhances the design versatility of miniature polarization device by introducing additional degrees of freedom. Based on phase change property of vanadium dioxide (VO<sub>2</sub>) and diatomic structure, this work proposes the method for transforming any given incident polarization into either linear or circular reflected polarization within the terahertz spectrum. Through arranging polarization-converting meta-atoms (PCMs) and polarization-maintaining meta-atoms (PMMs) periodically, the effect of mutual interference enables arbitrary to linear polarization conversion. By utilizing the interference between achiral diatoms, it is possible to achieve a conversion from arbitrary to circular polarization. The introduction of propagation phase and Pancharatnam-Berry (PB) phase enables wavefront manipulation and generates holograms in a specified reflected polarization channel. When VO<sub>2</sub> is metallic, the metasurface generates a hologram of the letter “X” for the x-polarized reflected wave. As VO<sub>2</sub> is insulating, the metasurface generates a hologram of the letter “T” for the left-handed circularly polarized (LCP) reflected wave. Our work presents a novel polarization converter device with broad application prospects in optical communication and information security.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108641"},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuoran Xi , Yunong Sun , Huafan Zhang , Jianbin Liu , Hui Chen , Yu Zhou , Yuchen He , Huaibin Zheng , KuaiKuai Yu , Zhuo Xu , Yuan Yuan
{"title":"Non-invasive multispectral scattering imaging via OTF retrieval","authors":"Zhuoran Xi , Yunong Sun , Huafan Zhang , Jianbin Liu , Hui Chen , Yu Zhou , Yuchen He , Huaibin Zheng , KuaiKuai Yu , Zhuo Xu , Yuan Yuan","doi":"10.1016/j.optlaseng.2024.108635","DOIUrl":"10.1016/j.optlaseng.2024.108635","url":null,"abstract":"<div><div>Spectral imaging can obtain spatial and spectral information of an object and play an important role in many application scenarios. Computational spectral imaging through scattering media utilizes the spectrally sensitive properties of scattering media as a filter for spectral imaging. The spatial and spectral information are reconstructed simultaneously by deconvolution with point spread function (PSF). Invasive spectral imaging imposes stringent constraints on the measurement accuracy of PSF and application scenarios. Here, we demonstrate a non-invasive multispectral scattering imaging method via optical transfer function (OTF) retrieval. The method uses multi-frame speckles to non-invasively retrieve the OTF of imaging system. Similar to the spectral filter property of PSF in the space domain, OTF at different wavelengths can be employed to filter and reconstruct the multispectral information of mixed speckle in the frequency domain. Our method overcomes the need for invasive measurements and is applicable to a wide range of scenarios for static and dynamic objects, providing a new approach to multispectral imaging.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108635"},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hengli Feng , Hongyan Meng , Jia Liu , Xin Zhang , Shuang Yang , Hanmo Du , Yachen Gao
{"title":"Non-contact multi-channel terahertz refractive index detecting via focused orbital angular momentum","authors":"Hengli Feng , Hongyan Meng , Jia Liu , Xin Zhang , Shuang Yang , Hanmo Du , Yachen Gao","doi":"10.1016/j.optlaseng.2024.108638","DOIUrl":"10.1016/j.optlaseng.2024.108638","url":null,"abstract":"<div><div>Terahertz refractive index (RI) sensor is an important tool for characterization of material properties. However, traditional immersion RI sensors suffer from issues of liquid contamination and low detection efficiency. Therefore, this study designs a non-contact multi-channel terahertz RI sensor based on metasurface which can produce vortex beam with focused orbital angular momentum (FOAM). Computing Spatially Weighted Variance (SWV) of the contours and intensities of the images resulting from different RI demonstrates that the RI value correlates uniquely with the weighted variance. Specifically, in the near-field metasurface (NF metasurface), by employing 3-bit phase binary (PB) encoding and convolution operations on vanadium dioxide (VO<sub>2</sub>) metasurfaces, we realized a high-purity FOAM with a focal length of <em>f</em> = 3500 μm. After fixing the sample under test at <em>f</em> = 3500 μm and analyzing the near-field FOAM amplitude images under various RI conditions using the SWV method, the RI detection sensitivity of the NF metasurface was calculated to be 15,775/RIU. To enhance detection efficiency and meet the requirements for far-field detection, we proposed a sensor capable of detecting multiple samples in the far-field. In the far-field metasurface (FF metasurface), when linearly polarized light is incident on this metasurface, the sensitivity of the FOAM to RI detection produced by this metasurface under the left circularly polarized (LCP) and right circularly polarized (RCP) components are 10,554/RIU and 13,292/RIU, respectively. The minimum change of the RI that can be detected by the near-field and far field sensors reaches 10<sup>−4</sup> RIU. When VO<sub>2</sub> transitions to its dielectric state, the metasurface switches to specular reflection, thereby endowing the sensor with switching functionality for RI detection. This approach overcomes issues of liquid-contaminated surfaces and enables simultaneous detection of multiple substances, offering broad application prospects across various sensing scenarios.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108638"},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modal wavefront reconstruction by Schwarz-Christoffel mapping and Zernike circle polynomials for noncircular pupils","authors":"Dong Yang , Zhongming Yang , Yanfeng Zhang","doi":"10.1016/j.optlaseng.2024.108643","DOIUrl":"10.1016/j.optlaseng.2024.108643","url":null,"abstract":"<div><div>Analyzing noncircular wavefront aberration require reconstructing orthonormal Zernike polynomials over noncircular pupils using Gram-Schmidt orthogonalization and nonrecursive matrix approach. However, these methods are computationally complex and time-consuming. We proposed a modal wavefront reconstruction method for noncircular pupils by Schwarz-Christoffel mapping and Zernike circle polynomials. Schwarz-Christoffel mapping is used to conformally transform the noncircular wavefront into a disk-shaped domain, enabling the mapped circular wavefronts to be fitted by Zernike circle polynomials. Experimental results demonstrate excellent agreement with measurements obtained from a commercial Fizeau interferometer. Furthermore, compared to the traditional orthonormal polynomials fitting method, the reconstruction accuracy of our method is higher than 90 %, and the time consuming is reduced by 2–5 times. This study presents a reliable modal wavefront reconstruction technique for noncircular pupils.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108643"},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Absolute detection method based on multi-signal phase extraction and separation","authors":"Yi Hou , Zhisong Li , Xin Tang","doi":"10.1016/j.optlaseng.2024.108637","DOIUrl":"10.1016/j.optlaseng.2024.108637","url":null,"abstract":"<div><div>The development of optical systems requires high-precision inspection technology, which supports the manufacturing and integration of optical systems. Currently, the method commonly used for high-precision optical plane inspection is interferometry based on the reference plane, however, its inspection accuracy is constrained by the accuracy of the reference plane. Therefore, this paper proposes an absolute detection method based on multi-signal phase extraction, which simplifies the detection process and effectively improves the detection accuracy. Firstly, the method detects the planes by utilizing the rotational translation method, secondly, the multi-surface separation technique is utilized to extract and separate the face shapes of the three surfaces in the rotational translation method, and lastly, the reference plane error is calibrated and excluded from the measurement results to accurately obtain the surface morphology of the component under test. The experimental results show that the present method reduces the PV of the residual error by about 25 % and reduces the RMS of the residual error by about 30 % compared to the existing absolute detection methods. The experimental results show that the present method reduces the PV of the residual error by about 25 % and reduces the RMS of the residual error by about 30 % compared to the existing absolute detection methods.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108637"},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Propagation dynamics and radiation force of the hollow flat-topped Gaussian beam carrying multi-vortex singularities","authors":"Jian Yu , Shandong Tong , Shuaiqi Geng , Bowen Dong , Zhe Zhang , Min Zhou , Peichao Zheng","doi":"10.1016/j.optlaseng.2024.108644","DOIUrl":"10.1016/j.optlaseng.2024.108644","url":null,"abstract":"<div><div>A hollow flat-topped Gaussian beam (HFTGB) embedded multi-vortex singularities is put forward in this paper. Its propagation dynamics under the different cases of topological charge, singularity number and location are investigated by means of numerical simulation and experiment. Especially, the evolution of the HFTGB carrying different fractional topological charges is also examined. In addition, the radiation force on a Rayleigh microsphere induced the HFTGB embedded multi-vortex singularities are analyzed and discussed in detail. The results demonstrate that, combined with the advantages of multiple singularities, the HFTGBs have a higher degree of regulatory freedom for trapping or manipulating Rayleigh particles. This work will contribute to the more precise and flexible use of HFTGBs in optical manipulation, optical communication, and other application scenarios.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108644"},"PeriodicalIF":3.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}