{"title":"Light field Laparoscope imaging model and calibration method based on flexible aperture-angular plane","authors":"","doi":"10.1016/j.optlaseng.2024.108676","DOIUrl":"10.1016/j.optlaseng.2024.108676","url":null,"abstract":"<div><div>With rapid developments in light field imaging, a great deal of attention has been given to its applications in industrial, medical and other fields due to its ability to perform three-dimensional reconstruction in single-shot. In these applications, Light field Laparoscope (LFL) is an important one, but it often suffers severe micro-lens image deformations that lead to incorrect LFL decoding, calibration and three-dimensional reconstruction. Based on the micro-lens image non-deformation constraint presented by us before, we propose the flexible aperture-angular plane to analyze the LFL imaging model, the modified microlens image non-deformation constraint for 3D LFL system and an advanced two-step calibration method to compute 3D LFL imaging parameters. Moreover, a 3D LFL imaging prototype is designed and calibrated. Experimental results show that microlens image deformations are avoided in this 3D LFL prototype, and the typical RMS re-projection error is about 0.06 pixels.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wafer chamfering grinding wheels dressing via dynamic deflection laser beam","authors":"","doi":"10.1016/j.optlaseng.2024.108673","DOIUrl":"10.1016/j.optlaseng.2024.108673","url":null,"abstract":"<div><div>Wafer chamfering forming grinding wheels (WCF) is a kind of V-shaped circular groove forming wheel with a large diameter and small grooves. In this study, a dynamic deflection laser beam method is presented to improve the dressing quality of WCF. The compensation effect of deflected laser on the surface laser energy density of materials was analyzed, and the blocking effect caused by oversized deflection angle of laser beam was analyzed. A C-W model was proposed for laser dressing of WCF. Based on C-W model, trajectory planning for laser dressing was carried out, and dressing experiments were completed. The results show that the contour transition of the grinding wheel is more smooth. Compared to single direct laser beam dressing method and static deflection laser dressing method, the contour exhibits better roundness and the PV values reduced to 5.1μm. Surface observation revealed strip-shaped patterns and some flocculent metamorphic layer. The SEM result shows that there are no obvious crack defects on the surface.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Full polarimetric evaluation of the anamorphic transfer function for pixelated liquid crystal microdisplays","authors":"","doi":"10.1016/j.optlaseng.2024.108670","DOIUrl":"10.1016/j.optlaseng.2024.108670","url":null,"abstract":"<div><div>Spatial Light Modulators (SLMs) employing phase-only modulation typically rely on parallel-aligned liquid crystal on silicon (PA-LCoS) microdisplays, known for their high resolution and small pixel size. However, the performance of high-definition pixelated SLM devices is affected by various interpixel cross-talk degradation effects, that manifest differently depending on the orientation and the spatial frequency profile displayed on the microdisplay. This study explores, both experimentally and numerically, the anamorphic spatial frequency transfer function for pixelated PA-LCoS devices. In particular, we focus on the impact of high-frequency binary phase grating profiles with the grating vector parallel and perpendicular to the alignment direction defined by the alignment layer. Experiments are performed with a commercial PA-LCoS microdisplay with eight-micron size pixels. Novel full Stokes light analysis (polarimetric study) of the diffraction orders and diffraction efficiency measurements (radiometric study) provides a deep insight into the anisotropic phenomena involved, showing not only anamorphic degradation in the radiometric but also in the polarimetric performance and dependent on the applied voltage. Computed rigorous electromagnetic numerical results show a very good agreement with the experimental ones. The numerical computation is an essential tool since it enables the connection of the far-field evaluation with the microscopic level: the 3D distribution of the LC director and the near-field values of the illuminating electromagnetic field are known for each applied voltage onto the PA-LCoS microdisplay and show evidence for the anamorphic results in the far-field. Through this rigorous combined radiometric-polarimetric computing approach, we provide evidence of the impact of smaller pixel sizes in this SLM technology and for different fill-factors.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly-secure scattering-media-based key storage","authors":"","doi":"10.1016/j.optlaseng.2024.108613","DOIUrl":"10.1016/j.optlaseng.2024.108613","url":null,"abstract":"<div><div>Since all the secrets are buried in the secret key, securely storing the secret keys plays a significant role in our modern information society. To avoid the risk of illegally duplicating the stored secret keys, Pappu <em>et al</em>. (Science 297, 2002) proposed an alternative strategy to authenticate a legal user, but not encrypt anything, by introducing a high security-level physical identity token which is well-known as the Physical Unclonable Function (PUF). However, it is incapable of keeping the already existing digital keys away from being duplicated. Here, by modifying the Wavefront Shaping (WS) technique, we present an idea to build a mapping relationship between any easy-to-duplicate digital key and an unclonable scattering media (e.g. ground glass) that is full of uncountable microparticles, and we named it the Unclonable Equivalent Key (UEK). Theoretical analysis and optical experiments were carried out to demonstrate its feasibility, especially its secure and robust performance assisted by an easy-to-implement alignment strategy.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced light field depth estimation through occlusion refinement and feature fusion","authors":"","doi":"10.1016/j.optlaseng.2024.108655","DOIUrl":"10.1016/j.optlaseng.2024.108655","url":null,"abstract":"<div><div>Light field depth estimation is crucial for various applications, but current algorithms often falter when dealing with complex textures and edges. To address this, we propose a light field depth estimation network based on multi-scale fusion and channel attention (LFMCNet). It incorporates a convolutional multi-scale fusion module to enhance feature extraction and utilizes a channel attention mechanism to refine depth map accuracy. Additionally, LFMCNet integrates the Transformer Feature Fusion Module (TFFM) and Channel Attention-Based Perspective Fusion (CAPF) module for improved occlusion refinement, effectively handling challenges in occluded regions. Testing on the 4D HCI and real-world datasets demonstrates that LFMCNet significantly reduces the Bad Pixel (BP) rate and Mean Square Error (MSE).</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detecting topological charge and phase of the vortex beam embedded into the low coherence background","authors":"","doi":"10.1016/j.optlaseng.2024.108668","DOIUrl":"10.1016/j.optlaseng.2024.108668","url":null,"abstract":"<div><div>We propose and experimentally demonstrate a single-path interferometric approach to quantify the higher-order topological charge (TC) and phase structure of a vortex beam embedded into a low-coherence background. The topological charge is determined by an in-line and common path configuration for superposing the fluctuating coherent beams loaded with vortex and non-vortex features. Ensemble average of the intensities of the superimposed fluctuating fields generates petal structure, and the number of petals infers the absolute value of the topological charge of the vortex beam. Furthermore, a three-step phase-shifting method along with a single-path interferometer is utilized to recover the phase and spectra of the TCs in the beams embedded into a low-coherence background. The results of our experiment demonstrate successful measurement of vortex beam with TCs up to 150. We believe that such petal patterns with incoherent light will be useful in sensing the rotation and motion of optically rough objects.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cascaded Fabry-Perot cavity and fiber Bragg grating on sapphire fibers for high-temperature strain sensing","authors":"","doi":"10.1016/j.optlaseng.2024.108674","DOIUrl":"10.1016/j.optlaseng.2024.108674","url":null,"abstract":"<div><div>High-temperature strain sensors are key elements for several applications. Key issues of the existing devices include the difficulties of sensor operating above 1000°C as well as the very strong thermal effect under high temperatures introducing significant bias on the strain measurement. Here we developed a cascaded Fabry-Perot cavity and fiber Bragg grating strain sensor fully integrated on sapphire fibers, permitting a sufficient temperature compensation and strain measurement up to 1150°C temperature. A three-point adhesive bonding process is proposed to greatly improve the adhesion performance, and hence the robustness of the device at high temperatures. Experimental results show that the fabricated strain sensor can achieve a measurement range of ±1000 με at temperature up to 1150°C. The experimental results show that the measurement accuracy is not more than 5% at room temperature. the measurement accuracy is significantly decreased at high temperature, and the maximum strain measurement error is 14% at 1150°C.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of axial chromatic aberration on color-multiplexed differential phase contrast microscopy: A quantitative study","authors":"","doi":"10.1016/j.optlaseng.2024.108660","DOIUrl":"10.1016/j.optlaseng.2024.108660","url":null,"abstract":"<div><div>Color-multiplexed differential phase contrast (cDPC) imaging relies on deconvolving phase gradient images with phase transfer function (PTF) to extract quantitative phase information. Typically, the PTF used in the deconvolution process is assumed to be ideal. However, in practice, the presence of axial chromatic aberration causes actual PTF deviates from the ideal state, further reducing the phase reconstruction accuracy in cDPC. Therefore, the axial chromatic aberration is closely associated with the phase reconstruction accuracy in cDPC. Nevertheless, there is still a lack of quantitative methods to analyze the impact of axial chromatic aberration on the phase reconstruction accuracy of cDPC system. In this study, we propose a method to quantify the effect of axial chromatic aberration on phase reconstruction quality. This approach involves analyzing the error in the PTF affected by axial chromatic aberration, compared to the ideal PTF. Simulation and experimental results have validated the effectiveness of the proposed method. Furthermore, by computing PTF errors across different imaging plane positions, we determine the imaging plane position that has minimal phase reconstruction error in cDPC. Compared to the traditional approach of determining the optimal imaging plane position through image contrast in experiment, the imaging plane position determined by our method has smaller phase reconstruction error and fewer reconstruction artifacts.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D single pixel imaging based on parallel measurement with quadrant detector","authors":"","doi":"10.1016/j.optlaseng.2024.108671","DOIUrl":"10.1016/j.optlaseng.2024.108671","url":null,"abstract":"<div><div>Structured light three-dimensional (3D) imaging has advantages such as high accuracy, high resolution, and non-contact, and has enormous application value in fields such as automotive manufacturing and cultural relic detection. However, it often requires multiple structured light encoding to obtain 3D information, thus limiting the speed of 3D imaging. Single pixel imaging (SPI) technology, due to its use of structured light and single point detection to jointly obtain image information, can simply achieve simultaneous detection of multi-dimensional information through a single pixel detector array. Therefore, the structured light 3D imaging technology is combined with the single-pixel technology of multi-channel quadrant sensing, and the modulation of three structured light fields of red, green, and blue light is achieved separately through the decoupling of spatial 3D information and spectral dimension information. Combined with a quadrant sensing detector integrated with red, green, and blue filtering, simultaneous measurement of three structured light field signals is achieved. Thus, a scheme demonstration is accomplished to improve the imaging speed of 3D imaging by three times through decoupling. Further combining Gray codes and optimizing Hadamard sequences using compressive sensing ensures the accuracy and imaging quality under undersampling of 3D imaging. The experimental results show that the RMSE of our method is only 0.0576 mm. This method can be further extended to achieve high-precision and high-quality 3D reconstruction using more channel structured light modulation and more spectral detector arrays in only one parallel measurement.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast complete Mueller matrix polarimetry microscopy using a single polarization camera","authors":"","doi":"10.1016/j.optlaseng.2024.108650","DOIUrl":"10.1016/j.optlaseng.2024.108650","url":null,"abstract":"<div><div>We propose a fast microscopic polarimeter for complete Mueller matrix imaging by using two rotating retarders and one polarization camera. Our new design allows us to compute the full Mueller matrix by 6 measurements in only ∼1.4s. The acquisition time is reduced by optimizing the sampling process. At the same time, the measurement precision is enhanced by minimizing the conditional numbers of the measurement matrices, compensating the pixel displacement, and calibrating the orientation of each polarization component in the system. As a demonstration, we use our fast polarimetry microscopy to measure the complete Mueller matrix for a garnet sample and cholesteric liquid crystal samples.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}