Petroleum Geoscience最新文献

筛选
英文 中文
Overview of the exploration potential of offshore Argentina – insight from new seismic interpretations 阿根廷近海勘探潜力综述——来自新地震解释的见解
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2022-01-19 DOI: 10.1144/petgeo2020-132
Steve DeVito, H. Kearns
{"title":"Overview of the exploration potential of offshore Argentina – insight from new seismic interpretations","authors":"Steve DeVito, H. Kearns","doi":"10.1144/petgeo2020-132","DOIUrl":"https://doi.org/10.1144/petgeo2020-132","url":null,"abstract":"Argentina's offshore sedimentary basins cover a vast area on one of the widest continental margins on the planet, yet they remain underexplored today. Previous exploration drilling has failed to encounter commercial volumes of hydrocarbons, in part due to the poor seismic imaging of legacy 1960s–1990s 2D seismic data, and to the majority of wells being drilled on structural highs outside of the source rock kitchens. In this study, we reviewed 52 000 km of recently acquired (2017–2018) regional 2D long-offset seismic data with broadband pre-stack time (PSTM) and depth migration (PSDM) processing. We identified five major structural domains with hydrocarbon prospectivity on the Northern Margin of Argentina and four on the Southern Margin, and the presence of previously unseen structural and stratigraphic traps involving sequences assigned to proven regional source rocks and reservoirs in Permian, Jurassic and Cretaceous rocks. The source and reservoir rocks, petroleum systems, and play types present in the deepwater of the undrilled Argentina Basin represent a true frontier for hydrocarbon exploration. Pseudo relief attribute seismic displays and amplitude v. angle (AVA) analysis are demonstrated to be valuable tools in predicting the stratigraphy of the basins. A new framework for understanding the oil and gas prospectivity of the study area is presented.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42359283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The principles of helium exploration 氦勘探的原理
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2022-01-11 DOI: 10.1144/petgeo2021-029
D. Danabalan, J. Gluyas, C. Macpherson, T. Abraham-James, J. Bluett, P. Barry, C. Ballentine
{"title":"The principles of helium exploration","authors":"D. Danabalan, J. Gluyas, C. Macpherson, T. Abraham-James, J. Bluett, P. Barry, C. Ballentine","doi":"10.1144/petgeo2021-029","DOIUrl":"https://doi.org/10.1144/petgeo2021-029","url":null,"abstract":"Commercial helium systems have been found to date as a serendipitous by-product of petroleum exploration. There are nevertheless significant differences in the source and migration properties of helium compared with petroleum. An understanding of these differences enables prospects for helium gas accumulations to be identified in regions where petroleum exploration would not be tenable. Here we show how the basic petroleum exploration playbook (source, primary migration from the source rock, secondary longer distance migration, trapping) can be modified to identify helium plays. Plays are the areas occupied by a prospective reservoir and overlying seal associated with a mature helium source. This is the first step in identifying the detail of helium prospects (discrete pools of trapped helium). We show how these principles, adapted for helium, can be applied using the Rukwa Basin in the Tanzanian section of the East African Rift as a case study. A thermal hiatus caused by rifting of the continental basement has resulted in a surface expression of deep crustal gas release in the form of high-nitrogen gas seeps containing up to 10% 4He. We calculate the total likely regional source-rock helium generative capacity, identify the role of the Rungwe volcanic province in releasing the accumulated crustal helium and show the spatial control of helium concentration dilution by the associated volcanic CO2. Nitrogen, both dissolved and as a free-gas phase, plays a key role in the primary and secondary migration of crustal helium and its accumulation into what might become a commercially viable gas pool. This too is examined. We identify and discuss evidence that structures and seals suitable for trapping hydrocarbon and CO2 gases will likely also be efficient for helium accumulation on the timescale of the Rukwa Basin activity. The Rukwa Basin prospective recoverable P50 resources of helium have been independently estimated to be about 138 BSCF (billion standard cubic ft: 2.78 × 109 m3 at STP). If this volume is confirmed it would represent about 25% of the current global helium reserve. Two exploration wells, Tai 1 and Tai 2, completed by August 2021 have proved the presence of seal and reservoir horizons with the reservoirs containing significant helium shows. This article is part of the Energy Geoscience Series available at https://www.lyellcollection.org/cc/energy-geoscience-series","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42379964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Investigating the PS seismic imaging of faults using seismic modelling and data from the Snøhvit field, Barents Sea 使用地震建模和巴伦支海Snøhvit油田的数据研究断层的PS地震成像
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2021-12-02 DOI: 10.1144/petgeo2020-044
J. Cunningham, W. Weibull, N. Cardozo, D. Iacopini
{"title":"Investigating the PS seismic imaging of faults using seismic modelling and data from the Snøhvit field, Barents Sea","authors":"J. Cunningham, W. Weibull, N. Cardozo, D. Iacopini","doi":"10.1144/petgeo2020-044","DOIUrl":"https://doi.org/10.1144/petgeo2020-044","url":null,"abstract":"PS seismic data from the Snøhvit field are compared with seismic modelling to understand the effect of azimuthal separation and incidence angle on the imaging of faults and associated horizon discontinuities. In addition, the frequency content of seismic waves backscattered from faults is analysed. The study area consists of a horst structure delimited by a northern fault dipping NW and oblique to the east–west survey orientation, and a southern fault dipping SSW and subparallel to the survey. Due to the raypath asymmetry of PS reflections, the northern fault is imaged better by azimuthally partitioned W data that include receivers downdip of the fault, relative to the sources, than by E data where the receivers are updip from the sources. Partial stack data show a systematic increase in the PS fault-reflected amplitude and therefore quality of fault imaging with increasing incidence angle. Fault images are dominated by internal low-medium frequency shadows surrounded by medium-high frequencies haloes. Synthetic experiments suggest that this is due to the interaction of specular waves and diffractions, and the spectral contribution from the fault signal, which increases with fault zone complexity. These results highlight the impact of survey geometry and processing workflows on fault imaging. Supplementary material: model description, processed sections and videos are available at https://doi.org/10.6084/m9.figshare.c.5727552","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42027946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of modelling decisions and rock typing schemes on oil in place estimates in a giant carbonate reservoir in the Middle East 建模决策和岩石分型方案对中东一个巨大碳酸盐岩储层的原地油估计的影响
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2021-11-29 DOI: 10.1144/petgeo2021-028
Mohamed AlBreiki, S. Geiger, P. Corbett
{"title":"Impact of modelling decisions and rock typing schemes on oil in place estimates in a giant carbonate reservoir in the Middle East","authors":"Mohamed AlBreiki, S. Geiger, P. Corbett","doi":"10.1144/petgeo2021-028","DOIUrl":"https://doi.org/10.1144/petgeo2021-028","url":null,"abstract":"We demonstrate how modelling decisions for a giant carbonate reservoir with a thick transition zone in the Middle East, most notably the approach to reservoir rock typing and modelling the initial fluid saturations, impact the hydrocarbon distributions and oil-in-place estimates in the reservoir. Rather than anchoring our model around a single base case with an upside and downside, we apply a comprehensive 3D multiple deterministic scenario workflow to compare-and-contrast how modelling decisions and geological uncertainties influence the volumetric estimates. We carry out a detailed analysis which shows that the variations in STOIIP estimates can be as high as 28% depending on the preferred modelling decision, which could potentially mask the impact of other geological uncertainties. These models were validated through repeated and randomised blind tests. We hence present a quantitative approach that helps us to assess if the static models are consistent in terms of the integration of geological and petrophysical data. Ultimately, the decision which of the different modelling options should be applied does not only influence STOIIP estimates, but also subsequent history matching & forecasts.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47539060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The rejuvenation of hydrocarbon exploration in the Eastern Mediterranean 东地中海油气勘探的复兴
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2021-11-24 DOI: 10.1144/petgeo2021-018
F. Lottaroli, L. Meciani
{"title":"The rejuvenation of hydrocarbon exploration in the Eastern Mediterranean","authors":"F. Lottaroli, L. Meciani","doi":"10.1144/petgeo2021-018","DOIUrl":"https://doi.org/10.1144/petgeo2021-018","url":null,"abstract":"The exploration history of the large Eastern Mediterranean Basin, which encompasses the Nile Delta, Levantine, Herodotus and Eratosthenes provinces, has seen several phases of rejuvenation since exploration started in the 1950s, with new plays opened repeatedly after the basin was considered mature by the industry. The 584 exploration wells drilled to date have discovered more than 23 Bboe recoverable reserves/resources, mostly gas. The first discovery was the Abu Madi Field, in 1967, which opened the Messinian clastic play. Over time, other plays and sub-plays were opened, including the Serravallian–Tortonian, the Plio–Pleistocene, the Oligo–Miocene in the Levantine, the intra-Oligocene and the Cretaceous carbonates. The exceptional variety of plays, with different trapping styles, reservoir and seal facies patterns has few equivalents worldwide and makes the region a valuable training ground for explorers. The geological variety is not the only reason for such a complex and episodic exploration history: commercial (gas market) and geopolitical issues have also had an impact on the activity in parts of the basin. The largest discoveries have been made in the last 10 years (Tamar, Leviathan, Zohr) and, despite the intense exploration activity, parts of the basin remain underexplored. The company with the longest and most successful play opening history in the basin is Eni. Today, most major oil companies are active in the basin, which even after 70 years is still considered one of the world's exploration hotspots.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46434580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negatively buoyant CO2 solution sequestration in synformal traps 负浮力CO2溶液在同型捕集器中的固存
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2021-11-22 DOI: 10.1144/petgeo2021-074
S. Stewart
{"title":"Negatively buoyant CO2 solution sequestration in synformal traps","authors":"S. Stewart","doi":"10.1144/petgeo2021-074","DOIUrl":"https://doi.org/10.1144/petgeo2021-074","url":null,"abstract":"Dissolving CO2 into water or brine produces a denser fluid than the CO2-free equivalent at all salinity, temperature and pressure conditions relevant to sedimentary basins. Negative buoyancy of CO2 solutions opens the possibility of utilizing negative-relief trapping configurations for CO2 sequestration, as opposed to structural highs conventionally sought for positively buoyant fluids, such as hydrocarbons or pure CO2. Exploring sedimentary basins for negative buoyancy traps can readily utilize hydrocarbon exploration datasets and techniques. Some major systemic differences when exploring for negative as opposed to positive buoyancy traps are examined here. Trap spatial scale is a consideration due to the inherent long-wavelength synformal geometry of basins. Antiforms are areally restricted relative to synforms, which may be embedded within larger-scale synformal closure at length scales right up to that of the basin itself. Multiscale synformal structures vary with basin type and may not be fully identified due to truncation effects arising from data-coverage limitations. Similar to hydrocarbon exploration, CO2 trap exploration must consider potential sequestration volumes in an uncertainty and risk framework. Charge risk is unnecessary in sequestration projects; however, the multiscale nature of synformal traps should be considered when estimating the range of storage volumes. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46095952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
3D seismic interpretation and fault slip potential analysis from hydraulic fracturing in the Bowland Shale, UK 英国鲍兰页岩水力压裂三维地震解释及断层滑动潜力分析
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2021-11-05 DOI: 10.1144/petgeo2021-057
Sirawitch Nantanoi, G. Rodríguez-Pradilla, J. Verdon
{"title":"3D seismic interpretation and fault slip potential analysis from hydraulic fracturing in the Bowland Shale, UK","authors":"Sirawitch Nantanoi, G. Rodríguez-Pradilla, J. Verdon","doi":"10.1144/petgeo2021-057","DOIUrl":"https://doi.org/10.1144/petgeo2021-057","url":null,"abstract":"The Bowland Shale Formation is one of the most promising targets for unconventional exploration in the United Kingdom, with estimated resources large enough to supply the country's entire natural gas consumption for 50 years. However, development of the Bowland Shale has stalled due to concerns over hydraulic-fracturing-induced seismicity. Only three wells have been drilled and hydraulic-fractured to date in the Bowland Shale, and all three have produced levels of seismicity of sufficient magnitude to be felt at the surface. Susceptibility to induced seismicity will be determined by the presence of critically stressed faults. However, such faults can go undetected in conventional interpretation of 2D or 3D seismic surveys if they are shorter than the resolution retrievable from a seismic survey, or if they have low (and in some cases even zero) vertical displacement. In such cases, the faults that cause induced seismicity may only be visible via microseismic observations once they are reactivated. To better identify fault planes from 3D seismic images, and their reactivation potential due to hydraulic fracturing, a high-resolution fault-detection attribute was tested in a 3D seismic survey that was acquired over the Preston New Road site, where two shale-gas wells were hydraulic-fractured in the Bowland Shale in 2018 and 2019, obtaining fault planes with lengths between 400 and 1500 m. Fault slip potential was then estimated by integrating the obtained faults with the formation's stress and pore pressure conditions (with the Bowland shale also being significantly overpressured), and several critically stressed faults were identified near the previously hydraulic fractured wells. However, the faults that induced the largest seismic events in the Preston New Road site, of c. 200 m in length for seismic events of magnitudes below 3.0 (as imaged with a multicomponent, downhole microseismic monitoring array deployed during the hydraulic-fracturing stimulations), could not be identified in the 3D seismic survey, which only mapped fault planes larger than 400 m in length.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45872873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
3D modelling and capacity estimation of potential targets for CO2 storage in the Adriatic Sea, Italy 意大利亚得里亚海二氧化碳储存潜在目标的三维建模和容量估计
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2021-10-12 DOI: 10.1144/petgeo2020-117
G. Proietti, M. Cvetkovic, B. Saftić, A. Conti, V. Romano, S. Bigi
{"title":"3D modelling and capacity estimation of potential targets for CO2 storage in the Adriatic Sea, Italy","authors":"G. Proietti, M. Cvetkovic, B. Saftić, A. Conti, V. Romano, S. Bigi","doi":"10.1144/petgeo2020-117","DOIUrl":"https://doi.org/10.1144/petgeo2020-117","url":null,"abstract":"One of the most innovative and effective technologies developed in recent decades for reducing carbon dioxide emissions to the atmosphere is carbon capture and storage (CCS). It consists of capture, transport and injection of CO2 produced by energy production plants or other industries. The injection takes place in deep geological formations with the suitable geometrical and petrophysical characteristics to trap CO2 permanently in the subsurface, which is called geological storage. In the development process of a potential geological storage site, correct capacity estimation of the injectable volumes of CO2 is one of the most important aspects. There are various approaches to estimate CO2 storage capacities for potential traps, including geometrical equations, dynamic modelling, numerical modelling and 3D modelling. In this work, the generation of 3D petrophysical models and equations for calculation of the storage volumes are used to estimate the effective storage capacity of four potential saline aquifers in the Adriatic Sea offshore. The results show how different saline aquifers, with different lithologies at favourable depths, can host a reasonable amount of CO2, which will require further and more detailed feasibility studies for each of these structures. A detailed analysis is carried out for each saline aquifer identified, varying the parameters of each structure identified and adapting them for a realistic estimate of potential geological storage capacity. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":"65 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41288930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
CO2 injection and storage in porous rocks: coupled geomechanical yielding below failure threshold and permeability evolution 多孔岩石中CO2的注入与储存:破坏阈值以下地质力学屈服与渗透率演化的耦合
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2021-09-13 DOI: 10.1144/petgeo2020-124
A. Tsopela, A. Bere, M. Dutko, J. Kato, S. Niranjan, Benjamin G. Jennette, S. Hsu, G. Dasari
{"title":"CO2 injection and storage in porous rocks: coupled geomechanical yielding below failure threshold and permeability evolution","authors":"A. Tsopela, A. Bere, M. Dutko, J. Kato, S. Niranjan, Benjamin G. Jennette, S. Hsu, G. Dasari","doi":"10.1144/petgeo2020-124","DOIUrl":"https://doi.org/10.1144/petgeo2020-124","url":null,"abstract":"With the increasing demand for CO2 storage in the subsurface, it is important to recognize that candidate formations may present complex stress conditions and material characteristics. Consequently, modelling of CO2 injection requires the selection of the most appropriate constitutive material model for the best possible representation of the material response. The authors focus on modelling the geomechanical behaviour of the reservoir material, coupled with a multiphase flow solution of CO2 injection into a saline-saturated medium. It is proposed that the SR3 critical-state material model is used, which considers a direct link between strength–volume–permeability that evolves during the simulation; furthermore, the material is considered to yield prior to reaching a peak strength in agreement with experimental observations. Verification of the material model against established laboratory tests is conducted, including multiphase flow accounting for relative permeabilities and fluid densities. Multiphase flow coupled to advanced geomechanics provides a holistic approach to modelling CO2 injection into sandstone reservoirs. The resulting injection pressures, CO2 migration extent and patterns, formation dilation, and strength reduction are compared for a range of in situ porosities and incremental material enhancements. This work aims to demonstrate a numerical modelling framework to aid in the understanding of geomechanical responses to CO2 injection for safe and efficient deployment, and is particularly applicable to CO2 sequestration in less favourable aquifers with a relatively low permeability, receiving CO2 from a limited number of injection wells at high flow rates. The proposed framework can also enable additional features to be incorporated into the model such as faults and detailed overburden representation. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41457767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Calibration of naturally fractured reservoir models using integrated well-test analysis – an illustration with field data from the Barents Sea 使用综合试井分析校准天然裂缝性储层模型——巴伦支海现场数据示例
IF 1.7 4区 地球科学
Petroleum Geoscience Pub Date : 2021-08-20 DOI: 10.1144/petgeo2020-042
D. Egya, P. Corbett, S. Geiger, J. Norgard, S. Hegndal-Andersen
{"title":"Calibration of naturally fractured reservoir models using integrated well-test analysis – an illustration with field data from the Barents Sea","authors":"D. Egya, P. Corbett, S. Geiger, J. Norgard, S. Hegndal-Andersen","doi":"10.1144/petgeo2020-042","DOIUrl":"https://doi.org/10.1144/petgeo2020-042","url":null,"abstract":"This paper successfully applied the geoengineering workflow for integrated well-test analysis to characterize fluid flow in a newly discovered fractured reservoir in the Barents Sea. A reservoir model containing fractures and matrix was built and calibrated using this workflow to match complex pressure transients measured in the field. We outline different geological scenarios that could potentially reproduce the pressure response observed in the field, highlighting the challenge of non-uniqueness when analysing well-test data. However, integrating other field data into the analysis allowed us to narrow the range of uncertainty, enabling the most plausible geological scenario to be taken forward for more detailed reservoir characterization and history matching. The results provide new insights into the reservoir geology and the key flow processes that generate the pressure response observed in the field. This paper demonstrates that the geoengineering workflow used here can be applied to better characterize naturally fractured reservoirs. We also provide reference solutions for interpreting well tests in fractured reservoirs where troughs in the pressure derivative are recognizable in the data.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42124188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信