{"title":"Negatively buoyant CO2 solution sequestration in synformal traps","authors":"S. Stewart","doi":"10.1144/petgeo2021-074","DOIUrl":null,"url":null,"abstract":"Dissolving CO2 into water or brine produces a denser fluid than the CO2-free equivalent at all salinity, temperature and pressure conditions relevant to sedimentary basins. Negative buoyancy of CO2 solutions opens the possibility of utilizing negative-relief trapping configurations for CO2 sequestration, as opposed to structural highs conventionally sought for positively buoyant fluids, such as hydrocarbons or pure CO2. Exploring sedimentary basins for negative buoyancy traps can readily utilize hydrocarbon exploration datasets and techniques. Some major systemic differences when exploring for negative as opposed to positive buoyancy traps are examined here. Trap spatial scale is a consideration due to the inherent long-wavelength synformal geometry of basins. Antiforms are areally restricted relative to synforms, which may be embedded within larger-scale synformal closure at length scales right up to that of the basin itself. Multiscale synformal structures vary with basin type and may not be fully identified due to truncation effects arising from data-coverage limitations. Similar to hydrocarbon exploration, CO2 trap exploration must consider potential sequestration volumes in an uncertainty and risk framework. Charge risk is unnecessary in sequestration projects; however, the multiscale nature of synformal traps should be considered when estimating the range of storage volumes. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2021-074","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Dissolving CO2 into water or brine produces a denser fluid than the CO2-free equivalent at all salinity, temperature and pressure conditions relevant to sedimentary basins. Negative buoyancy of CO2 solutions opens the possibility of utilizing negative-relief trapping configurations for CO2 sequestration, as opposed to structural highs conventionally sought for positively buoyant fluids, such as hydrocarbons or pure CO2. Exploring sedimentary basins for negative buoyancy traps can readily utilize hydrocarbon exploration datasets and techniques. Some major systemic differences when exploring for negative as opposed to positive buoyancy traps are examined here. Trap spatial scale is a consideration due to the inherent long-wavelength synformal geometry of basins. Antiforms are areally restricted relative to synforms, which may be embedded within larger-scale synformal closure at length scales right up to that of the basin itself. Multiscale synformal structures vary with basin type and may not be fully identified due to truncation effects arising from data-coverage limitations. Similar to hydrocarbon exploration, CO2 trap exploration must consider potential sequestration volumes in an uncertainty and risk framework. Charge risk is unnecessary in sequestration projects; however, the multiscale nature of synformal traps should be considered when estimating the range of storage volumes. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.