{"title":"Crossing the Chasm: Using Technical Transfer to Bridge Science Production and Management Action","authors":"","doi":"10.1016/j.rama.2024.08.008","DOIUrl":"10.1016/j.rama.2024.08.008","url":null,"abstract":"<div><div>The rangeland science discipline has produced innovative science, datasets, maps, and tools to support rangeland conservation and management, such as those presented in this issue. Yet, there is a persistent gap between science production and on-the-ground implementation of conservation and management actions, and many managers remain in “information overload” while struggling to integrate technical products into management applications. Technical transfer seeks to overcome these barriers and empower land managers to address their land management challenges. We present a principle-based process for conducting effective technical transfer based on the collective experience of a network of technical transfer professionals and highlight an example of this process with Threat-Based Strategic Conservation workshops. We describe how much of the work of technical transfer occurs before any actions are taken, provide best practices for conducting technical transfer, and suggest steps to take after an effort to learn from and perpetuate technical transfer work. We provide considerations and insights for conducting effective technical transfer to support conservation and management in rangelands and beyond.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using Satellite Remote Sensing to Assess Shrubland Vegetation Responses to Large-Scale Juniper Removal in the Northern Great Basin","authors":"","doi":"10.1016/j.rama.2024.08.010","DOIUrl":"10.1016/j.rama.2024.08.010","url":null,"abstract":"<div><div>Woody encroachment into grasslands and shrublands disrupts ecosystem processes and reduces biodiversity. Tree removal is a widespread strategy to restore ecosystem services and biodiversity in impacted landscapes. However, tree removal can also increase the risk of invasion by exotic annual grasses. In western North America, juniper (<em>Juniperus spp.</em>) encroachment threatens the ecological integrity of intact sagebrush (<em>Artemisia tridentata</em>) shrublands. We used remote sensing to track vegetation changes following juniper removals on 288 parcels totaling 106 333 ha in southern Idaho, USA. We also analyzed vegetation changes following 64 wildfires that burned 152 611 ha of nearby rangeland during the same period. We matched areas within removals and wildfires to similar undisturbed areas, and then used causal impact analysis to estimate the effects of the disturbances. Juniper removals resulted in sustained reduction of tree cover and increased perennial forb and grass cover across nearly all sites, achieving key management goals. Based on the metrics evaluated, juniper removal was more effective than wildfire in delivering long-term restoration in this sagebrush system. However, juniper treatments also stimulated temporary undesirable increases in annual grasses and forbs, indicating the need for additional management to achieve durable conservation outcomes. Intensive mechanical methods initially reduced shrub cover in some treatments, but shrubs recovered to near pre-treatment levels within 7 years. Using a recently-developed metric of ecological integrity for sagebrush ecosystems, we show that these large, long-term projects halted or reversed degradation attributed to juniper expansion, demonstrating that restoration can improve the trajectory of ecosystems when implemented at scale.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Closing the Conservation Gap: Spatial Targeting and Coordination are Needed for Conservation to Keep Pace with Sagebrush Losses","authors":"","doi":"10.1016/j.rama.2024.08.016","DOIUrl":"10.1016/j.rama.2024.08.016","url":null,"abstract":"<div><div>Core sagebrush areas (CSAs), patches of high sagebrush ecological integrity, continue to decline despite significant conservation and restoration investments across the sagebrush biome. Historically, conservation decisions in the biome have been driven by wildlife species-specific demands, but increasing recognition of the scale of threats and the pace of ecosystem degradation has compelled a shift towards threat-based ecosystem management. Therefore, there is a need to evaluate the scale of conservation implementation relative to the rate of degradation or loss from specific threats to the biome to assess whether a conservation deficit exists. To this end, we: 1) quantified and compared the average hectares of conservation practices implemented annually relative to the hectares of CSA loss attributed to each threat; 2) evaluated the relative amount of conservation actions in core sagebrush areas, growth opportunity areas, and other rangeland areas; and 3) assessed how much additional conservation may be needed to stop CSA declines. We then quantified how better spatial targeting and enhanced coordination might reduce the total additional amount of future conservation needed, and evaluated how an influx of resources can close the conservation gap, or the deficit between the conservation needed to offset annual loss and degradation and the capacity for conservation implementation. We found that current rates of conservation (e.g., hectares treated annually) are markedly lower than rates of CSA loss (∼10% of average annual loss). Furthermore, most conservation actions, ∼90% for some treatment types, occurred outside of CSAs likely reducing the efficacy of these conservation actions at retaining and restoring intact sagebrush rangelands. Additionally, we found that conservation efforts will need to increase by more than an order of magnitude (at least 10x) annually to halt CSA declines. However, through better spatial targeting of conservation actions, the increase in conservation needed to stop CSA loss could be reduced by 70% or more. This analysis demonstrates the divergent futures that may await the sagebrush biome pending key decisions regarding conservation targeting, stakeholder cooperation, and the strategic addition of resources.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Well-Connected Core Areas Retain Ecological Integrity of Sagebrush Ecosystems Amidst Overall Declines From 2001–2021","authors":"","doi":"10.1016/j.rama.2024.08.020","DOIUrl":"10.1016/j.rama.2024.08.020","url":null,"abstract":"<div><div>Conservation of species’ mobility and ecological integrity is necessary for the productivity of the sagebrush biome in the western United States. Building on the recently developed Sagebrush Conservation Design (SCD) that mapped sagebrush ecological integrity (SEI)—defined as the higher cover of sagebrush and perennial grass and reduced threats due to invasive annual grass, tree encroachment, and human disturbance—we modeled the structural connectivity of sagebrush ecosystems to better incorporate the role of landscape-level processes into assessments of integrity. Because integrity can vary spatially, as well as temporally, we quantified both interannual variability and trends in variability in SEI from 2001–2021. We used the resultant map to identify areas with high structural landscape connectivity (i.e., “well-connected cores”), then determined the coincident core sagebrush areas (CSAs) that represent functioning sagebrush ecosystem with few landscape threats, and growth opportunity areas (GOAs) that represent functioning systems impacted by one or more threats as originally defined and mapped in the SCD. We found that CSAs were located in areas with higher landscape connectivity, and the biome-wide average of SEI declined by 30% from 2001 to 2021, although the structural connectivity biome-wide declined one-third less (by 20%). CSAs located in areas with high connectivity had 25% higher SEI values on average than those with low connectivity, and the trend in declining SEI values was slower. Our datasets of landscape connectivity can be combined with other SCD products to provide a broader ecosystem context—both spatially and temporally. Our results can be used to inform, refine, focus, and prioritize conservation and management efforts to those CSAs and GOAs we identified as particularly well connected and which may be more resilient to recently altered dynamics and declines—those that will serve to anchor efforts to conserve the sagebrush biome in light of changing land use and climate.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cooperative Conservation Actions Improve Sage-Grouse Population Performance Within the Bi-State Distinct Population Segment","authors":"","doi":"10.1016/j.rama.2024.08.007","DOIUrl":"10.1016/j.rama.2024.08.007","url":null,"abstract":"<div><div>Developing a robust monitoring framework that integrates efficacy assessments of cooperative conservation and restoration actions in relation to population viability is critical for successful long-term recovery of target ecosystems and species. However, often it is difficult to quantify conservation action efficacy because of the complex, dynamic nature of ecosystem processes and practical limitations associated with assessing target species’ population dynamics. Here, we present an analytical framework that allows for quantification of conservation action efficacy using greater sage-grouse (<em>Centrocercus urophasianus</em>; hereafter, sage-grouse) within the Bi-State Distinct Population Segment which spans the border of Nevada and California. This framework utilizes a web-based repository of conservation efforts carried out in sagebrush ecosystems and readily fits within contemporary sagebrush conservation design strategies. We employed a state-space model within a Bayesian framework to estimate abundance (<em>N</em>) as inputs for a progressive change before-after-control-impact paired series (BACIPS) design. Although sage-grouse populations continue to decline in the Bi-State, count data from 57 leks (monitored between 2003–2021) coupled with 85 unique actions (initiated between 2012–2019) provided clear evidence that conservation efforts increased population abundance, on average, by 4.4% annually, resulting in a predicted population abundance that was 37.4% greater than if no actions had occurred, since 2012. Population gains varied by the type of conservation action and according to the number of lag years following its implementation.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"There Is No Hope Without Change: A Perspective on How We Conserve the Sagebrush Biome","authors":"","doi":"10.1016/j.rama.2024.08.004","DOIUrl":"10.1016/j.rama.2024.08.004","url":null,"abstract":"<div><div>This is not a typical journal article in tone or style. As part of a special issue focused on the Sagebrush Conservation Design and Strategic Conservation, this paper highlights how we need to change our management of the sagebrush biome with a perspective of why that change matters. Sagebrush ecosystems are in steep decline, losing more than 1 million acres annually for decades from biome-altering threats of invasive annual grasses, conifer expansion, catastrophic wildfire, and climate change. As illustrated by the other papers in this special issue, management of the sagebrush biome needs to drastically change, focusing prevention and restoration on intact landscapes while accepting we cannot bring back the biome where it is already lost. Imbedded in this choice to change how we manage the biome is why that change matters. In this paper I include a series of personal anecdotes, observations, and connections that I hope helps you, the reader, understand the content of this special issue not only as an integrated body of science, but also an embrace of how we relate to the future of the biome. I embrace that future by applying the Defend and Grow the Core framework around Sagebrush Conservation Design Core and Growth Areas, and by layering in the tenants of the Resist, Accept, Direct model. The biggest gaps for ecosystem management are not from lack of knowledge, but from lack of clear administration priorities and funding, and robust social capacity to restore and steward our last geographies of hope. By using both a pessimist's and optimist's perspective on the plight of the range, I hope you deeply sense the opportunity and the urgency we face, making hard choices of what we do and where, building a long-term commitment to a restoration economy, and supporting people to save the sagebrush sea.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Defend and Grow the Core for Birds: How a Sagebrush Conservation Strategy Benefits Rangeland Birds","authors":"","doi":"10.1016/j.rama.2024.08.018","DOIUrl":"10.1016/j.rama.2024.08.018","url":null,"abstract":"<div><div>Population declines among sagebrush (<em>Artemisia</em> spp.) reliant birds mirror the larger deterioration of the sagebrush ecosystem. To combat this biome decline, western partners have unified around a common vision for sagebrush conservation by developing the Sagebrush Conservation Design, which identified high-priority areas, designated as “core sagebrush areas” (CSAs), to anchor conservation actions throughout the biome. While this conservation design did not explicitly consider the distribution or abundance of focal species, an underlying assumption has been that sagebrush-associated wildlife will benefit from actions targeting threats to the sagebrush biome. Herein, we explicitly test whether sagebrush ecological integrity (SEI), the metric used to quantify CSAs, is associated with sagebrush songbird abundance and population trends, such that CSAs provide an effective umbrella for wildlife conservation. Because species likely vary in their response to different ecological factors, we further examined the relative importance of the five components of SEI: sagebrush cover, tree cover, perennial grass cover, annual grass cover, and human modification, in structuring sagebrush songbird populations. We found substantial increases in population counts associated with increased values of SEI across three species examined: sagebrush sparrow (<em>Artemisiospiza nevadensis</em>), Brewer's sparrow (<em>Spizella breweri</em>), and sage thrasher (<em>Oreoscoptes montanus</em>). Specifically, models supported 10 times (sage thrasher), six times (Brewer's sparrow), and three times (sagebrush sparrow) higher median relative abundances in CSAs compared with surrounding areas. Further, we found strong evidence of large population declines as areas transitioned out of CSAs. Finally, although we found some species-specific differences in the relative importance of the five SEI components, generally, sagebrush cover and tree cover were more important than grass cover in influencing bird populations. We show that conservation actions designed to preserve or grow CSAs will likely benefit sagebrush-obligate songbird populations and other focal wildlife, especially if consideration is given to which component(s) of SEI are targeted.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing Conservation Readiness: The Where, Who, and How of Strategic onservation in the Sagebrush Biome","authors":"","doi":"10.1016/j.rama.2024.08.013","DOIUrl":"10.1016/j.rama.2024.08.013","url":null,"abstract":"<div><div>The sagebrush biome is rapidly deteriorating largely due to the ecosystem threats of conifer expansion, more frequent and larger wildfires, and proliferation of invasive annual grasses. Reversing the impacts of these threats is a formidable challenge. The Sagebrush Conservation Design (SCD) emphasized that limited conservation resources should first be used to maintain Core Sagebrush Areas (CSA), and then to grow such areas where possible. The SCD heightens the ecological importance of maintaining and strategically growing CSAs. However, the fact that these areas have been identified does not mean that conservation is immediately possible or will be effective. Strategic conservation in the sagebrush biome does not only involve working in ecologically important areas; it is an approach that must explicitly acknowledge the social and administrative conditions in which individuals and organizations are making decisions. We accordingly propose that strategic, durable work can only occur in geographies of “conservation readiness,” that is, where ecological importance, social capacity, and conducive administrative conditions intersect. We offer a framework for assessing conservation readiness that functions as both an inventory and diagnostic tool, highlighting current assets while shining a light on needs and the types of activities that will create or sustain conservation readiness. We demonstrate the utility of the Conservation Readiness Framework for identifying the different roles and activities that must occur at local, mid, and regional levels to nurture conservation readiness over time. In practice, this approach contrasts with management driven solely by ecological importance and illustrates that effective conservation must also involve targeted efforts that curate both social and administrative conditions.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Climate Change Amplifies Ongoing Declines in Sagebrush Ecological Integrity","authors":"","doi":"10.1016/j.rama.2024.08.003","DOIUrl":"10.1016/j.rama.2024.08.003","url":null,"abstract":"<div><div>Understanding how climate change will contribute to ongoing declines in sagebrush ecological integrity is critical for informing natural resource management, yet complicated by interactions with wildfire and biological invasions. We assessed potential future changes in sagebrush ecological integrity under a range of scenarios using an individual plant-based simulation model, integrated with remotely sensed estimates of current sagebrush ecological integrity. The simulation model allowed us to estimate how climate change, wildfire, and invasive annuals interact to alter the potential abundance of key plant functional types that influence sagebrush ecological integrity: sagebrush, perennial grasses, and annual grasses. Our results suggest that climate driven reductions in sagebrush ecological integrity may occur over broader areas than increases in sagebrush ecological integrity. Declines in sagebrush ecological integrity were most likely in hot and dry regions while increases were more likely in cool and wet regions. The most common projected transitions of sagebrush ecological integrity classes were declines from Core Sagebrush Area to Growth Opportunity Area and from Growth Opportunity Area to Other Rangeland Area. Responses varied considerably across projections from different global climate models, highlighting the importance of climate uncertainty. However, our projections tended to be robust in areas that currently have the highest sagebrush ecological integrity. Our results provide a long-term perspective on the vulnerability of sagebrush ecosystems to climate change and may inform geographic prioritization of conservation and restoration investments. The results also suggest that ongoing threats, such as the continued invasion by annual grasses and increased wildfire frequency, are likely to be amplified by climate change, and imply that the current imbalance between capacity for conservation to address threats to sagebrush will grow as the climate warms.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Strategic and Science-Based Framework for Management of Invasive Annual Grasses in the Sagebrush Biome","authors":"","doi":"10.1016/j.rama.2024.08.019","DOIUrl":"10.1016/j.rama.2024.08.019","url":null,"abstract":"<div><div>In the last 20 years, the North American sagebrush biome has lost over 500 000 ha of intact and largely intact sagebrush plant communities on an annual basis. Much of this loss has been associated with expansion and infilling of invasive annual grasses (IAGs). These species are highly competitive against native perennial grasses in disturbed environments, and create fuel conditions that increase both the likelihood of fire ignition and the ease of wildfire spread across large landscapes. Given the current rate of IAG expansion in both burned and unburned rangelands, we propose a range-wide paradigm shift from opportunistic and reactive management, to a framework that spatially prioritizes maintenance of largely intact, uninvaded areas and improvement of invaded habitats in strategic locations. We created a framework accompanied by biome-wide priority maps using geospatial overlays that target areas to <strong>MAINTAIN</strong> large, uninvaded areas as natural resource anchors through activities to prevent IAGs, <strong>IMPROVE</strong> areas where management success in restoring large, intact landscapes is most likely, and <strong>CONTAIN</strong> IAG infestations where necessary. We then offer three case studies to illustrate the use of these concepts and map products at multiple scales. Our map products operate at the biome scale using regional data sources and additional data sources will be needed to inform local conservation planning. However, the basic strategic management principles of (1) maintaining the intact and uninvaded areas that we can least afford to lose to IAGs, (2) improving areas where we have a reasonable likelihood of restoration success, and (3) containing problems where we must, are timely, relevant, and scalable from the biome to local levels.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}