Ysai Paucar , Flor L. Mejía , Enrique R. Flores , Paul H. Mayhua , Deysi Ruiz-Llontop , José A. Saucedo-Uriarte , William Bardales , Leandro Valqui , Lucrecia Aguirre
{"title":"Aboveground Biomass Partitioning and Utilization in Festuca dolichophylla: Implications for Rangeland Management","authors":"Ysai Paucar , Flor L. Mejía , Enrique R. Flores , Paul H. Mayhua , Deysi Ruiz-Llontop , José A. Saucedo-Uriarte , William Bardales , Leandro Valqui , Lucrecia Aguirre","doi":"10.1016/j.rama.2025.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>Peruvian rangelands are dominated by grasses; whose aerial biomass is distributed among blades, culms, sheaths, and inflorescences serving as essential forage for livestock. Effective management of these rangeland require an accurate assessment of biomass utilization to determine carrying capacity properly. Biomass partitioning varies by species, whereas utilization estimation depends on both, species characteristics and methodological approaches. Therefore, this study aimed to evaluate the partitioning and utilization of aboveground biomass in geographically different populations of <em>Festuca dolichophylla</em> under similar conditions, a key grass species in Peruvian rangelands. <em>F. dolichophylla</em> from: Pastales Huando Peasant Community–Huancavelica (Huancavelica-community), Lachocc South American Camelid Research and Development Center of the National University of Huancavelica (Huancavelica-university), Junín, Pasco, and Puno were transplanted to an environment with uniform soil and climate. Aboveground biomass partitioning was analyzed using a linear model analysis of variance with fixed and nested effects, including covariate adjustment, followed by Tukey’s post hoc tests. Biomass utilization was estimated using height–weight relationships, allowing for the evaluation of how plant structure relates to available forage. The Puno population exhibited significantly higher aboveground biomass (<em>P</em> < 0.05) in blades and culms + sheaths, whereas inflorescence biomass did not differ among populations (<em>P</em> > 0.05). In terms of biomass partitioning, no significant differences were observed for inflorescences (<em>P</em> > 0.05); however, the populations of Pasco and Puno were different (<em>P</em> < 0.05). Plants from Pasco allocated a greater proportion of biomass to blades, while those from Puno exhibited a higher allocation to culms + sheaths. Logarithmic regression provided a more accurate model (<em>R</em><sup>2</sup> ≥ 0.88) for estimating biomass utilization compared with linear regression (<em>R</em><sup>2</sup> ≤ 0.77), with <em>F. dolichophylla</em> population-specific variations. The observed differences in biomass partitioning and utilization highlight the necessity of population-specific management strategies. These findings provide valuable insights for optimizing the sustainable management of rangelands dominated by <em>F. dolichophylla</em>.</div></div>","PeriodicalId":49634,"journal":{"name":"Rangeland Ecology & Management","volume":"103 ","pages":"Pages 210-217"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangeland Ecology & Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1550742425001241","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peruvian rangelands are dominated by grasses; whose aerial biomass is distributed among blades, culms, sheaths, and inflorescences serving as essential forage for livestock. Effective management of these rangeland require an accurate assessment of biomass utilization to determine carrying capacity properly. Biomass partitioning varies by species, whereas utilization estimation depends on both, species characteristics and methodological approaches. Therefore, this study aimed to evaluate the partitioning and utilization of aboveground biomass in geographically different populations of Festuca dolichophylla under similar conditions, a key grass species in Peruvian rangelands. F. dolichophylla from: Pastales Huando Peasant Community–Huancavelica (Huancavelica-community), Lachocc South American Camelid Research and Development Center of the National University of Huancavelica (Huancavelica-university), Junín, Pasco, and Puno were transplanted to an environment with uniform soil and climate. Aboveground biomass partitioning was analyzed using a linear model analysis of variance with fixed and nested effects, including covariate adjustment, followed by Tukey’s post hoc tests. Biomass utilization was estimated using height–weight relationships, allowing for the evaluation of how plant structure relates to available forage. The Puno population exhibited significantly higher aboveground biomass (P < 0.05) in blades and culms + sheaths, whereas inflorescence biomass did not differ among populations (P > 0.05). In terms of biomass partitioning, no significant differences were observed for inflorescences (P > 0.05); however, the populations of Pasco and Puno were different (P < 0.05). Plants from Pasco allocated a greater proportion of biomass to blades, while those from Puno exhibited a higher allocation to culms + sheaths. Logarithmic regression provided a more accurate model (R2 ≥ 0.88) for estimating biomass utilization compared with linear regression (R2 ≤ 0.77), with F. dolichophylla population-specific variations. The observed differences in biomass partitioning and utilization highlight the necessity of population-specific management strategies. These findings provide valuable insights for optimizing the sustainable management of rangelands dominated by F. dolichophylla.
期刊介绍:
Rangeland Ecology & Management publishes all topics-including ecology, management, socioeconomic and policy-pertaining to global rangelands. The journal''s mission is to inform academics, ecosystem managers and policy makers of science-based information to promote sound rangeland stewardship. Author submissions are published in five manuscript categories: original research papers, high-profile forum topics, concept syntheses, as well as research and technical notes.
Rangelands represent approximately 50% of the Earth''s land area and provision multiple ecosystem services for large human populations. This expansive and diverse land area functions as coupled human-ecological systems. Knowledge of both social and biophysical system components and their interactions represent the foundation for informed rangeland stewardship. Rangeland Ecology & Management uniquely integrates information from multiple system components to address current and pending challenges confronting global rangelands.