{"title":"6. The Modern Entertainment Marketplace, 2000–Present","authors":"M. Kerins","doi":"10.36019/9780813564289-007","DOIUrl":"https://doi.org/10.36019/9780813564289-007","url":null,"abstract":"","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"2 1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83113566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comparison on the Localization Performance of Static and Dynamic Binaural Ambisonics Reproduction with Different Order","authors":"Jianliang Jiang, Bo-sun Xie, Haiming Mai","doi":"10.32604/sv.2019.04259","DOIUrl":"https://doi.org/10.32604/sv.2019.04259","url":null,"abstract":"Ambisonics is a series of spatial sound reproduction system based on spatial harmonics decomposition and each order approximation of sound field. Ambisonics signals are originally intended for loudspeakers reproduction. By using head-related transfer functions (HRTFs) filters, binaural Ambisonics converts the Ambisonics signals for static or dynamic headphone reproduction. In present work, the performances of static and dynamic binaural Ambisonics reproduction are evaluated and compared. The mean binaural pressure errors across target source directions are first analyzed. Then a virtual source localization experiment is conducted, and the localization performances are evaluated by analyzing the percentages of front-back and up-down confusion, the mean angle error and discreteness in the localization results. The results indicate that binaural Ambsonics reproduction with insufficiently high order (for example, 5-10 order) is unable to recreate correct high-frequency magnitude spectra in binaural pressures, resulting in degradation in localization for static reproduction. Because dynamic localization cue is included, dynamic binaural Ambisoncis reproduction yields obviously better localization performance than static reproduction with the same order. Even a 3-order dynamic binaural Ambisoncis reproduction exhibits appropriate localizations performance.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"20 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81861065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianing Zhang, Ziying Yu, Hengxu Yang, Wu Ming, Yang Jun
{"title":"Ultrasonic Wireless Communication Through Metal Barriers","authors":"Jianing Zhang, Ziying Yu, Hengxu Yang, Wu Ming, Yang Jun","doi":"10.32604/SV.2019.03783","DOIUrl":"https://doi.org/10.32604/SV.2019.03783","url":null,"abstract":"Ultrasound can be used as a carrier to realize wireless communication to and from a metal-enclosed space, which has the characteristics such as immunity to the electromagnetic shielding effect and non-destructive penetration of metal obstacles. This paper firstly reviews the previous studies in the field of ultrasonic wireless communication through metal barriers, and summarizes their achievements and the existing problems. Secondly, an overview of the research methods involved in studying the characteristic of acoustic-electric channel is presented, and the principles are introduced for the actual measurement method, equivalent circuit method, ABCD parameter method, finite element analysis method and time-domain finite difference method. Then, an overview of the communication algorithms are presented such as orthogonal frequency division multiplexing (OFDM), single-carrier frequency domain equalization and multiple input multiple output OFDM. Finally, the potential future study are proposed in light of the trend of development and unsolved problems.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"225 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74718066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic Modeling and Analysis ofWind Turbine Blade of Piezoelectric Plate Shell","authors":"Yin-hu Qiao, Chunyan Zhang, Jiang Han","doi":"10.32604/SV.2019.04120","DOIUrl":"https://doi.org/10.32604/SV.2019.04120","url":null,"abstract":"This paper presents a theoretical analysis of vibration control technology of wind turbine blades made of piezoelectric intelligent structures. The design of the blade structure, which is made from piezoelectric material, is approximately equivalent to a flat shell structure. The differential equations of piezoelectric shallow shells for vibration control are derived based on piezoelectric laminated shell theory. On this basis, wind turbine blades are simplified as elastic piezoelectric laminated shells. We establish the electromechanical coupling system dynamic model of intelligent structures and the dynamic equation of composite piezoelectric flat shell structures by analyzing simulations of active vibration control. Simulation results show that, under wind load, blade vibration is reduced upon applying the control voltage.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"17 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82620488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessie Y.C. Chen, Wc Chen, Tim Chen, Alex Wilson, N. F. Jamaludin, N. Kapron, John Burno
{"title":"Synthesized AI LMI-based Criterion for Mechanical Systems","authors":"Jessie Y.C. Chen, Wc Chen, Tim Chen, Alex Wilson, N. F. Jamaludin, N. Kapron, John Burno","doi":"10.32604/sv.2019.04233","DOIUrl":"https://doi.org/10.32604/sv.2019.04233","url":null,"abstract":"","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"14 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81300590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical Study of the Energies of the Oscillating System with a Well-Distributed Mass of the Spring","authors":"Ye-Wan Ma, Hansen Chang, Zhao-Wang Wu, Yan-Yan Jiang, Juan Li, Xun-Chang Yin, Q. Liu, Li-Hua Zhang","doi":"10.32604/sv.2019.04622","DOIUrl":"https://doi.org/10.32604/sv.2019.04622","url":null,"abstract":"The energy of a spring with a well-distributed mass ms is theoretically studied in this paper. The solution of the wave equation is derived in detail, and then the kinetic energy and potential energy of the spring are studied with the wave equation, as well as the kinetic energy of the oscillating mass M. The kinetic energy and potential energy of the spring, and total energy are numerically simulated for different ratios ms/M with considering the spring’s mass, which makes the property of energy of the oscillating system understood easily.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"2 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73575779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of Outdoor Noise Propagation Induced By Single-Phase Power Transformers","authors":"Xue-yun Ruan, Wei Huang, Linke Zhang, Yan Gao","doi":"10.32604/SV.2019.04562","DOIUrl":"https://doi.org/10.32604/SV.2019.04562","url":null,"abstract":"","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"21 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84950521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measurements in Situ and Spectral Analysis of Wind Flow Effects on Overhead Transmission Lines","authors":"M. Dutkiewicz, M. Machado","doi":"10.32604/sv.2019.04803","DOIUrl":"https://doi.org/10.32604/sv.2019.04803","url":null,"abstract":"In the paper an important issue of vibrations of the transmission line in real conditions was analyzed. Such research was carried out by the authors of this paper taking into account the cross-section of the cable being in use on the transmission line. Analysis was performed for the modern ACSR high voltage transmission line with span of 213.0 m. The purpose of the investigation was to analyze the vibrations of the power transmission line in the natural environment and compare with the results obtained in the numerical simulations. Analysis was performed for natural and wind excited vibrations. The numerical model was made using the Spectral Element Method. In the spectral model, for various parameters of stiffness, damping and tension force, the system response was checked and compared with the results of the accelerations obtained in the situ measurements. A frequency response functions (FRF) were calculated. The credibility of the model was assessed through a validation process carried out by comparing graphical plots of FRF functions and numerical values expressing differences in acceleration amplitude (MSG), phase angle differences (PSG) and differences in acceleration and phase angle total (CSG) values. Particular attention was paid to the hysteretic damping analysis. Sensitivity of the wave number was performed for changing of the tension force and section area of the cable. The next aspect constituting the purpose of this paper was to present the wide possibilities of modelling and simulation of slender conductors using the Spectral Element Method. The obtained results show very good accuracy in the range of both experimental measurements as well as simulation analysis. The paper emphasizes the ease with which the sensitivity of the conductor and its response to changes in density of spectral mesh division, cable cross-section, tensile strength or material damping can be studied.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"28 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78132491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Simplified Formulation to Estimate Influence of Gearbox Parameters on the Rattle Noise","authors":"Jidong Zhang, Wen-fei Sui, J. Dhupia","doi":"10.32604/SV.2019.04362","DOIUrl":"https://doi.org/10.32604/SV.2019.04362","url":null,"abstract":"","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"32 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79481125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}