Dynamic Modeling and Analysis ofWind Turbine Blade of Piezoelectric Plate Shell

IF 0.9 Q4 ACOUSTICS
Yin-hu Qiao, Chunyan Zhang, Jiang Han
{"title":"Dynamic Modeling and Analysis ofWind Turbine Blade of Piezoelectric Plate Shell","authors":"Yin-hu Qiao, Chunyan Zhang, Jiang Han","doi":"10.32604/SV.2019.04120","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical analysis of vibration control technology of wind turbine blades made of piezoelectric intelligent structures. The design of the blade structure, which is made from piezoelectric material, is approximately equivalent to a flat shell structure. The differential equations of piezoelectric shallow shells for vibration control are derived based on piezoelectric laminated shell theory. On this basis, wind turbine blades are simplified as elastic piezoelectric laminated shells. We establish the electromechanical coupling system dynamic model of intelligent structures and the dynamic equation of composite piezoelectric flat shell structures by analyzing simulations of active vibration control. Simulation results show that, under wind load, blade vibration is reduced upon applying the control voltage.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/SV.2019.04120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a theoretical analysis of vibration control technology of wind turbine blades made of piezoelectric intelligent structures. The design of the blade structure, which is made from piezoelectric material, is approximately equivalent to a flat shell structure. The differential equations of piezoelectric shallow shells for vibration control are derived based on piezoelectric laminated shell theory. On this basis, wind turbine blades are simplified as elastic piezoelectric laminated shells. We establish the electromechanical coupling system dynamic model of intelligent structures and the dynamic equation of composite piezoelectric flat shell structures by analyzing simulations of active vibration control. Simulation results show that, under wind load, blade vibration is reduced upon applying the control voltage.
压电板壳风力发电机叶片动力学建模与分析
本文对压电智能结构风力机叶片振动控制技术进行了理论分析。叶片结构设计采用压电材料,近似等效于平壳结构。基于压电层压壳理论,推导了用于振动控制的压电浅壳的微分方程。在此基础上,将风力发电机叶片简化为弹性压电层压壳。通过主动振动控制仿真分析,建立了智能结构机电耦合系统动力学模型和复合压电扁壳结构动力学方程。仿真结果表明,在风荷载作用下,施加控制电压可以减小叶片振动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sound and Vibration
Sound and Vibration 物理-工程:机械
CiteScore
1.50
自引率
33.30%
发文量
33
审稿时长
>12 weeks
期刊介绍: Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications. Papers are sought that contribute to the following general topics: -broad-based interests in noise and vibration- dynamic measurements- structural analysis- computer-aided engineering- machinery reliability- dynamic testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信