Statistics & Probability Letters最新文献

筛选
英文 中文
Transportation cost-information inequality for stochastic wave equation with spatially inhomogeneous white noise
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-06 DOI: 10.1016/j.spl.2024.110321
Zhigang Yao, Bin Zhang, Junfeng Liu
{"title":"Transportation cost-information inequality for stochastic wave equation with spatially inhomogeneous white noise","authors":"Zhigang Yao,&nbsp;Bin Zhang,&nbsp;Junfeng Liu","doi":"10.1016/j.spl.2024.110321","DOIUrl":"10.1016/j.spl.2024.110321","url":null,"abstract":"<div><div>In this paper, we prove the existence, uniqueness and Hölder continuity of the mild solution to the nonlinear stochastic wave equation driven by spatially inhomogeneous white noise. Furthermore, we establish a Talagrand’s <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> transportation cost-information inequality for the law of the solution on the continuous path space with respect to the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110321"},"PeriodicalIF":0.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable approximation for call function via Stein’s method
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-05 DOI: 10.1016/j.spl.2024.110328
Peng Chen , Tianyi Qi , Ting Zhang
{"title":"Stable approximation for call function via Stein’s method","authors":"Peng Chen ,&nbsp;Tianyi Qi ,&nbsp;Ting Zhang","doi":"10.1016/j.spl.2024.110328","DOIUrl":"10.1016/j.spl.2024.110328","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be a sum of independent identically distribution random variables with finite first moment and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span> be a call function defined by <span><math><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>M</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>max</mo><mrow><mo>{</mo><mi>x</mi><mo>−</mo><mi>M</mi><mo>,</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, <span><math><mrow><mi>M</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. In this paper, we assume the random variables are in the domain <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> of normal attraction of a stable law of exponent <span><math><mi>α</mi></math></span>, then for <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, we use the Stein’s method developed in Chen et al. (2024) to give uniform and non uniform bounds on <span><math><mi>α</mi></math></span>-stable approximation for the call function without additional moment assumptions. These results will make the approximation theory of call function applicable to the lower moment conditions, and greatly expand the scope of application of call function in many fields.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110328"},"PeriodicalIF":0.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limiting distribution for infinite-server batch service queues
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-05 DOI: 10.1016/j.spl.2024.110327
Bara Kim , Jeongsim Kim
{"title":"Limiting distribution for infinite-server batch service queues","authors":"Bara Kim ,&nbsp;Jeongsim Kim","doi":"10.1016/j.spl.2024.110327","DOIUrl":"10.1016/j.spl.2024.110327","url":null,"abstract":"<div><div>Nakamura and Phung-Duc (2023) conjectured that, for an infinite-server batch service queue with Poisson arrivals, the central limit theorem for the number of busy servers, conditioned on the number of waiting customers and the size of the batch to be served, holds as the arrival rate goes to infinity. In this paper, we resolve this conjecture using the theory of Markov regenerative processes and further extend the result to renewal arrival models.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110327"},"PeriodicalIF":0.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kac’s central limit theorem by Stein’s method
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-05 DOI: 10.1016/j.spl.2024.110329
Suprio Bhar , Ritwik Mukherjee , Prathmesh Patil
{"title":"Kac’s central limit theorem by Stein’s method","authors":"Suprio Bhar ,&nbsp;Ritwik Mukherjee ,&nbsp;Prathmesh Patil","doi":"10.1016/j.spl.2024.110329","DOIUrl":"10.1016/j.spl.2024.110329","url":null,"abstract":"<div><div>In 1946, Mark Kac proved a Central Limit type theorem for a sequence of random variables that were not independent. The random variables under consideration were obtained from the angle-doubling map. The idea behind Kac’s proof was to show that although the random variables under consideration were not independent, they were what he calls <em>statistically independent</em> (in modern terminology, this concept is called long range independence). Using that observation, Kac showed that the sample averages of the random variables, suitably normalized, converges to the standard normal distribution. In this paper, we give a new proof of Kac’s result by applying Stein’s method. We show that the normalized sample averages converge to the standard normal distribution in the Wasserstein metric, which in particular implies convergence in distribution.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110329"},"PeriodicalIF":0.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Almost sure convergence of the waiting time for a G/G/1 queue in heavy traffic
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-04 DOI: 10.1016/j.spl.2024.110326
Ye Xia
{"title":"Almost sure convergence of the waiting time for a G/G/1 queue in heavy traffic","authors":"Ye Xia","doi":"10.1016/j.spl.2024.110326","DOIUrl":"10.1016/j.spl.2024.110326","url":null,"abstract":"<div><div>Consider a G/G/1 queueing model with traffic intensity <span><math><mrow><mi>ρ</mi><mo>=</mo><mn>1</mn></mrow></math></span>. Let <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the waiting time in the queue for customer <span><math><mi>n</mi></math></span>. We provide a class of sufficient conditions for almost sure convergence of <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> to 0, where <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110326"},"PeriodicalIF":0.9,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the maximal correlation coefficient for the bivariate Marshall Olkin distribution
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-02 DOI: 10.1016/j.spl.2024.110323
Axel Bücher, Torben Staud
{"title":"On the maximal correlation coefficient for the bivariate Marshall Olkin distribution","authors":"Axel Bücher,&nbsp;Torben Staud","doi":"10.1016/j.spl.2024.110323","DOIUrl":"10.1016/j.spl.2024.110323","url":null,"abstract":"<div><div>We prove a formula for the maximal correlation coefficient of the bivariate Marshall Olkin distribution that was conjectured in Lin et al., 2016. The formula is applied to obtain a new proof for a variance inequality in extreme value statistics that links the disjoint and the sliding block maxima method.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110323"},"PeriodicalIF":0.9,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric quantile-based measures of multivariate distributional characteristics
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-02 DOI: 10.1016/j.spl.2024.110325
Ha-Young Shin, Hee-Seok Oh
{"title":"Geometric quantile-based measures of multivariate distributional characteristics","authors":"Ha-Young Shin,&nbsp;Hee-Seok Oh","doi":"10.1016/j.spl.2024.110325","DOIUrl":"10.1016/j.spl.2024.110325","url":null,"abstract":"<div><div>Several new geometric quantile-based measures for multivariate dispersion, skewness, kurtosis, and spherical asymmetry are defined. These measures differ from existing measures, which use volumes, and are easy to calculate. Some theoretical justification is given, followed by experiments illustrating that they are sensible measures of these distributional characteristics and some basic empirical justification for bootstrapped confidence regions.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110325"},"PeriodicalIF":0.9,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moderate deviations for the number of descents in a random permutation
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-02 DOI: 10.1016/j.spl.2024.110320
Hui Jiang, Jing Wang
{"title":"Moderate deviations for the number of descents in a random permutation","authors":"Hui Jiang,&nbsp;Jing Wang","doi":"10.1016/j.spl.2024.110320","DOIUrl":"10.1016/j.spl.2024.110320","url":null,"abstract":"<div><div>The number of descents in a random permutation has close connections with generalized Pólya urn and random trees. Via the Laplace functional calculations and asymptotic analysis techniques, we prove that the number of descents satisfies the moderate deviations and Cramér type moderate deviations. Then, using the martingale difference representation, we establish the functional moderate deviations in <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> equipped with the uniform topology.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110320"},"PeriodicalIF":0.9,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New proofs to measurable, predictable and optional section theorems
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-12-01 DOI: 10.1016/j.spl.2024.110324
Stefanos Theodorakopoulos
{"title":"New proofs to measurable, predictable and optional section theorems","authors":"Stefanos Theodorakopoulos","doi":"10.1016/j.spl.2024.110324","DOIUrl":"10.1016/j.spl.2024.110324","url":null,"abstract":"<div><div>We present new, short and elementary proofs of the famous section theorems that are used in Stochastic Calculus. Predictable section is proved directly while measurable section is a simple corollary. Then, optional (resp. accessible) section follows from an intuitive approximation argument based on the dichotomy of predictable and total inaccessible times.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110324"},"PeriodicalIF":0.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The first exit time of fractional Brownian motion from an unbounded domain
IF 0.9 4区 数学
Statistics & Probability Letters Pub Date : 2024-11-30 DOI: 10.1016/j.spl.2024.110319
Yinbing Zhou, Dawei Lu
{"title":"The first exit time of fractional Brownian motion from an unbounded domain","authors":"Yinbing Zhou,&nbsp;Dawei Lu","doi":"10.1016/j.spl.2024.110319","DOIUrl":"10.1016/j.spl.2024.110319","url":null,"abstract":"<div><div>Consider a fractional Brownian motions starting at the interior point <span><math><mrow><mfenced><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>h</mi><mfenced><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow></mfenced><mo>+</mo><mn>2</mn><mi>K</mi></mrow></mfenced><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></math></span> with the constant <span><math><mrow><mi>K</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, for some fixed <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, of an unbounded domain <span><math><mrow><mi>D</mi><mo>=</mo><mfenced><mrow><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>:</mo><mi>y</mi><mo>&gt;</mo><mi>h</mi><mfenced><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></mfenced></mrow></mfenced></mrow></math></span>, The function <span><math><mi>h</mi></math></span> is a nondecreasing, lower semicontinuous, and convex function on <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span> with <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> being finite. Here we take <span><math><mrow><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>=</mo><mi>A</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mfenced><mrow><mo>log</mo><mi>x</mi></mrow></mfenced></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span>with a positive constant <span><math><mi>A</mi></math></span> for <span><math><mrow><mi>x</mi><mo>&gt;</mo><mi>K</mi></mrow></math></span>. It is evident that <span><math><mrow><msup><mrow><mi>h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> exhibits monotonic behavior for sufficiently large values of <span><math><mi>x</mi></math></span>. Let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> denote the first time that the fractional Brownian motion exits from <span><math><mi>D</mi></math></span>. In most cases, we give the asymptotically equivalent estimate of <span><math><mrow><mo>log</mo><mi>P</mi><mfenced><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>&gt;</mo><mi>t</mi></mrow></mfenced></mrow></math></span>. The proof methods are based on the earlier works of Li, Shi, Lifshits, and Aurzada.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"218 ","pages":"Article 110319"},"PeriodicalIF":0.9,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信