Manpreet Singh, V. Vaishali, D. Deepika, J. Jyoti, Shubham Sharma, Naveen Banyal, Prashant Kumar, Bharti Budhalakoti, C. Malakar, Virender Singh
{"title":"Erratum - Transition-Metal-Free Cascade C–N Bond Formation: An Effective Strategy for the Synthesis of β-Carboline N-Fused Imidazolium Acetates and Estimation of their Light-Emitting Properties","authors":"Manpreet Singh, V. Vaishali, D. Deepika, J. Jyoti, Shubham Sharma, Naveen Banyal, Prashant Kumar, Bharti Budhalakoti, C. Malakar, Virender Singh","doi":"10.1055/s-0040-1720082","DOIUrl":"https://doi.org/10.1055/s-0040-1720082","url":null,"abstract":"","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"1 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89882744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ordóñez, Rubén Oswaldo Argüello-Velasco, Teodoro Miranda-Blancas, Iván Romero-Estudillo, Victoria Labastida-Galván
{"title":"First Stereoselective Synthesis of Diethyl cis - and trans -(4-Hydroxy-1,2,3,4-tetrahydroquinolin-2-yl)phosphonates and Ethyl Phenylphosphinates from Quinolin-4(1 H )-one","authors":"M. Ordóñez, Rubén Oswaldo Argüello-Velasco, Teodoro Miranda-Blancas, Iván Romero-Estudillo, Victoria Labastida-Galván","doi":"10.1055/a-2164-2075","DOIUrl":"https://doi.org/10.1055/a-2164-2075","url":null,"abstract":"We report here a practical method for the first stereoselective synthesis of novel diethyl cis- and trans-(4-hydroxy-1,2,3,4-tetrahydro-quinolin-2-yl)phosphonates, as well as the ethyl cis- and trans-(4-hydroxy-1,2,3,4-tetrahydroquinolin-2-yl)phenylphosphinates. The main feature of this method involves the regioselective 1,4-phosponylation to N-Cbz quinolin-4(1H)-one using diethyl phosphite or ethyl phenylphosphinate followed by the high diastereoselective reduction, to give the cis stereoisomers as favored products, which through the Mitsunobu reaction were converted into trans stereoisomers. Cleavage of N-Cbz bond under hydrogenolysis, gave the target heterocyclic α-aminophosphonates and α-aminophosphinates.","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"29 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91166608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical Organic Synthesis","authors":"Hai‐Chao Xu","doi":"10.1055/s-0040-1720081","DOIUrl":"https://doi.org/10.1055/s-0040-1720081","url":null,"abstract":"The potential of electrochemical organic synthesis in achieving sustainable and efficient chemical syntheses, while offering unique reactivity and selectivity, makes it a promising avenue for addressing the challenges in synthetic organic chemistry. The past two decades have witnessed a remarkable advancement in organic electrochemistry, primarily due to the influx of passionate and innovative scientists. These trailblazers, armed with their unique perspectives, are driving the field into uncharted territories, often surpassing the visions of the early pioneers. Their groundbreaking work is carving out new frontiers and making significant scientific impacts, which are aptly highlighted in this special issue. Their pioneering contributions are projected to extend the core foundation of electrochemistry and usher in transformative insights. The articles featured in this special issue on electrochemical organic synthesis are the result of a diverse array of authors hailing from countries across the globe, including Brazil, Canada, China, France, Italy, Japan, Portugal, and the United States. This variety exemplifies the widespread adoption and universal appeal of electrochemistry in the realm of synthetic organic chemistry, confirming its global recognition and relevance within the international scientific community. In this special issue, a selection of review papers vividly illuminates the latest advancements and emerging topics in electrochemical organic synthesis. He, Pan and colleagues explore the evolution of spirocyclic compound construction via electrochemical synthesis strategies since 2000.1 Kong, Cao, and colleagues shed light on recent progress in electro-, photo-, and photoelectrochemical applications of quaternary ammonium salts.2 Qin, Li and co-workers present an indepth review of electrochemical difunctionalization of alkenes.3 Lu and his team delve into transition-metal electrochemical asymmetric catalysis including the recently emerged photoelectrochemical asymmetric catalysis (PEAC).4 Phillips, Pombeiro, and associates encapsulate the power of electrochemistry in catalytic enantioselective synthesis.5 Zhang, Liu, and their team offer a comprehensive summary of electrochemical cascade cyclization reactions used in carbon ring and heterocycle production.6 Mo and his team succinctly overview the latest breakthroughs in high-throughput experimentation technology for electrosynthesis.7 Gui and his team have provided a comprehensive summary of halogen-mediated electrochemical transformations of sulfur-containing compounds.8 Lastly, Chen and his team delve into the fascinating topic of photoelectrochemical cerium catalysis in their detailed review.9 Moreover, an assortment of research papers exhibits the cutting-edge methods and techniques in the field. A notable contribution from Charette, Poisson, Jubault, and their team delineates the synthesis of cyclopropylamines from the corresponding amides through a bromide-mediated, electroinduc","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"11 1","pages":"2797 - 2798"},"PeriodicalIF":2.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87571829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synthesis-StuttgartPub Date : 2023-08-01Epub Date: 2023-02-02DOI: 10.1055/s-0042-1751413
Jonathan R Scheerer, Ella B Leeth, Jennifer A Sprow
{"title":"Synthesis of Guaipyridine Alkaloids Rupestine M and L by Cycloaddition/Cycloreversion of an Intermediate 1,4-Oxazinone.","authors":"Jonathan R Scheerer, Ella B Leeth, Jennifer A Sprow","doi":"10.1055/s-0042-1751413","DOIUrl":"10.1055/s-0042-1751413","url":null,"abstract":"<p><p>A new method to prepare 1,4-oxazinone intermediates was developed based on aza-conjugate addition of β-amino alcohols to electron-deficient alkyne precursors. A tandem intramolecular cycloaddition/cycloreversion reaction sequence was evaluated, leading to the synthesis of the guaipyridine alkaloid natural products rupestine M and L. Starting from (-)-citronellal and thus a known configuration of the C5 stereocenter, a revised absolute configuration of natural rupestine L is suggested based on optical rotation.</p>","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"55 15","pages":"2319-2324"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10588037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synthesis-StuttgartPub Date : 2023-08-01Epub Date: 2022-12-15DOI: 10.1055/s-0042-1751393
Emma C Murphy, Jeffrey S Johnson
{"title":"Simplified Synthesis of an Air-Stable Copper-Complexed Josiphos Ligand via Ugi's Amine: Complete Preparation and Analysis from Ferrocene.","authors":"Emma C Murphy, Jeffrey S Johnson","doi":"10.1055/s-0042-1751393","DOIUrl":"10.1055/s-0042-1751393","url":null,"abstract":"<p><p>Ligands containing ferrocene backbones often feature both planar chirality and asymmetric centers, making them attractive options for asymmetric catalysis. Ugi's amine is a ubiquitous ferrocene-based chiral building block that can be functionalized to form a variety of tunable Josiphos ligands; however, few sources lay out the route from start to finish. Starting from ferrocene, we compile a synthetic route to an air- and moisture-stable copper(I)-Josiphos complex via enantiopure Ugi's amine, providing a potential one-stop shop for the synthesis of a wide range of Josiphos ligands.</p>","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"55 15","pages":"2390-2396"},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10105521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synthesis-StuttgartPub Date : 2023-08-01Epub Date: 2022-12-20DOI: 10.1055/s-0041-1738430
Jessica T Liu, Daniel S Brandes, Nathaniel S Greenwood, Jonathan A Ellman
{"title":"Synthesis of <i>N</i>-Acylsulfenamides from Amides and <i>N</i>-Thiosuccinimides.","authors":"Jessica T Liu, Daniel S Brandes, Nathaniel S Greenwood, Jonathan A Ellman","doi":"10.1055/s-0041-1738430","DOIUrl":"10.1055/s-0041-1738430","url":null,"abstract":"<p><p>Herein is reported a robust and general method for the preparation of <i>N</i>-acylsulfenamides, important functionalities that have recently been utilized as central inputs for the asymmetric synthesis of high oxidation state sulfur compounds. This straightforward transformation proceeds by reaction of primary amides, carbamates, sulfonamides, sulfinamides, and ureas with stable <i>N</i>-thiosuccinimides or <i>N</i>-thiophthalimides, which in turn are prepared in a single step from commercial thiols. The use of stable <i>N</i>-thiosuccinimide and <i>N</i>-thiophthalimide reactants is desirable because it obviates the use of highly reactive sulfenyl chlorides.</p>","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"55 15","pages":"2353-2360"},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9830912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinay Kumar Mishra, Ghanshyam Tiwari, A. Khanna, Rajdeep Tyagi, R. Sagar
{"title":"Efficient Synthesis of Chirally Enriched 1 H -Imidazo[1,2- b ]pyrazole- and 4 H -Imidazo[1,2- b ][1,2,4]triazole-Based Bioactive Glycohybrids","authors":"Vinay Kumar Mishra, Ghanshyam Tiwari, A. Khanna, Rajdeep Tyagi, R. Sagar","doi":"10.1055/a-2157-9100","DOIUrl":"https://doi.org/10.1055/a-2157-9100","url":null,"abstract":"Carbohydrates, traditionally known for their energy-providing role, have gained significant attention in drug discovery due to their diverse bioactivities and stereodiversity. However, pure carbohydrate molecules often exhibit limited bioactivity and suboptimal chemical and physical characteristics. To address these challenges, bioactive scaffolds have been incorporated into carbohydrate to enhance their bioactivity and improve their overall properties. Among the various heterocyclic structural motifs known for their pharmacological properties, imidazo-pyrazole and imidazo-triazole skeleton have gained larger attention among synthetic and medicinal chemists as they possess good biological and pharmacological properties. Present work deals with the incorporation of carbohydrate moieties into these bioactive scaffolds (imidazo-pyrazole and imidazo-triazole skelton) to develop an efficient synthetic protocol for new class of imidazo-pyrazole and imidazo-triazole glycohybrid molecules. The carbohydrate derived α-iodo-2,3-dihydro-4H-pyran-4-ones have been identified as suitable precursors which were coupled with various amino-pyrazoles and amino-triazoles to obtain designed glycohybrids. Thus, various imidazo-pyrazole and imidazo-triazole based glycohybrids have been prepared efficiently in good to very good yield. These new glycohybrids evaluated for their anticancer activity and selected compounds were found to possess submicromolar anticancer activity. These molecules could potentially be developed as new chemical entities and may encourage the use of carbohydrates in stereo-divergent synthesis and drug discovery processes.","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"38 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85945589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress on the Enantioselective Synthesis of Axially Chiral Cycloalkylidenes","authors":"Zi-Lu Wang, Yun‐He Xu","doi":"10.1055/a-2159-1688","DOIUrl":"https://doi.org/10.1055/a-2159-1688","url":null,"abstract":"The discovery of new asymmetric synthetic methodologies and the asymmetric synthesis of new chiral compounds have been the central work of synthetic organic chemists for decades. Axially chiral compounds have gained considerable attention in recent years because of their unique utility in asymmetric catalysis and synthesis. The asymmetric synthesis of axially chiral cycloalkylidenes, a subset of axial chirality molecules, is sluggish compared to chiral allenes, and chiral biaryl compounds. In this review, different approaches for the synthesis of axially chiral cycloalkylidenes are summarized.","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"180 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83010977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liangliang Yang, Haiyang Wang, Ming Lang, Shiyong Peng
{"title":"Recent Advances on High-Order Dipolar Annulations of Donor–Acceptor Cyclopropanes/Cyclobutanes","authors":"Liangliang Yang, Haiyang Wang, Ming Lang, Shiyong Peng","doi":"10.1055/a-2155-3615","DOIUrl":"https://doi.org/10.1055/a-2155-3615","url":null,"abstract":"This short review summarizes the recent impressive developments in the high-order dipolar annulations (HODAs) of donor–acceptor cyclopropanes (DACs) and donor–acceptor cyclobutanes (DABs) to afford medium-sized (hetero)cycles.","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"6 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81739678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of Pyrido[2,3- d ]pyrimidines Catalyzed by 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)/ tert -Butyl Nitrite (TBN)/O 2","authors":"Dongping Cheng, Hongshuang Xia, Huafang Gu, Yawei Wang, Jinghua Li, Xiaoliang Xu","doi":"10.1055/a-2156-7470","DOIUrl":"https://doi.org/10.1055/a-2156-7470","url":null,"abstract":"Catalyzed by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)/tert-butyl nitrite (TBN)/O2, an efficient tandem oxidative reaction of uracils/thiouracil with 1,3-diarylpropenes is disclosed. It undergoes oxidative coupling, intramolecular cyclization, and dehydro-aromatization to provide multi-substituted pyrido[2,3-d]pyrimidines/thiopyrido[2,3-d]pyrimidines in moderate to excellent yields. It has the advantages of high atom economy, green terminal oxidant, and metal-free conditions.","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"44 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79334014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}