{"title":"A systematic review of research on laboratory work in secondary school","authors":"N. Gericke, P. Högström, J. Wallin","doi":"10.1080/03057267.2022.2090125","DOIUrl":"https://doi.org/10.1080/03057267.2022.2090125","url":null,"abstract":"ABSTRACT We present an integrative mixed-methods systematic review of research on laboratory work in secondary-school science education from 1996 to 2019. The aim of the study is to identify important aspects of how to successfully make use of laboratory work as a science-teaching strategy in secondary schools. By engaging teachers, our study uses a demand-driven approach where the users of evidence participate in setting the scope. Of a sample of 11,771 studies, 39 were selected for the integrative analysis. The result is structured around three theoretical frameworks to inform our understanding of what characterises laboratory work, (1) with the aim of developing students’ learning of science, (2) with the aim of developing students’ learning to do science (science practices), and (3) regarding the level of inquiry that facilitates aims 1 and 2. The results are discussed in the light of previous research reviews, and recommendations for future research are suggested.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"59 1","pages":"245 - 285"},"PeriodicalIF":4.9,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49294149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michaela Arztmann, L. Hornstra, J. Jeuring, L. Kester
{"title":"Effects of games in STEM education: a meta-analysis on the moderating role of student background characteristics","authors":"Michaela Arztmann, L. Hornstra, J. Jeuring, L. Kester","doi":"10.1080/03057267.2022.2057732","DOIUrl":"https://doi.org/10.1080/03057267.2022.2057732","url":null,"abstract":"ABSTRACT Game-based learning has proven to be effective and is widely used in science education, but usually the heterogeneity of the student population is being overlooked. To examine the differential effects of game interventions in STEM (Science, Technology, Engineering and Mathematics) related subjects on diverse student groups, a meta-analysis has been conducted that included 39 studies that compared game-based learning interventions with traditional classrooms in primary and early secondary education. We found moderate positive effects on cognition (g = .67), motivation (g = .51), and behaviour (g = .93). Additionally, substantial heterogeneity between studies was found. Moderator analyses indicated that primary school students achieve higher learning outcomes and experience game interventions as more motivating than secondary school students, whereas gender did not have any moderating effect. There were too few studies reporting information on the remaining moderators (socioeconomic status, migration background, and special educational needs) to include them in a multiple meta-regression model. Therefore, we assessed their role by separate moderator analyses, but these results need to be interpreted with caution. Additional descriptive analyses suggested that game-based learning may be less beneficial for students with low socioeconomic status compared to students with high socioeconomic status.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"22 3","pages":"109 - 145"},"PeriodicalIF":4.9,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41260348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emeritus Professor J. F. Donnelly","authors":"E. Jenkins","doi":"10.1080/03057267.2022.2050518","DOIUrl":"https://doi.org/10.1080/03057267.2022.2050518","url":null,"abstract":"","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"58 1","pages":"137 - 139"},"PeriodicalIF":4.9,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41614011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Students need more practice with spatial thinking in geoscience education: a systematic review of the literature","authors":"Jessica A. McLaughlin, J. Bailey","doi":"10.1080/03057267.2022.2029305","DOIUrl":"https://doi.org/10.1080/03057267.2022.2029305","url":null,"abstract":"ABSTRACT Myriad research in a variety of contexts shows spatial skills benefit students; however, they are not given enough attention in classroom instruction. In this review we systematically explore geoscience education literature focusing on spatial interventions to answer research questions on trends in spatial skills and other characteristics. We narrow our attention to studies published since numerous calls to action to teach more spatial skills in STEM education, resulting in 28 articles for review. To analyse and compare these studies, we organise the literature into a framework of geoscience-relevant spatial skills. We reviewed interventions and assessments to determine the aligning spatial typology skills. Themes of coursework, mapping, and modelling emerged; sub-themes include sketching, gestures, physical models, computer models, and curricular interventions. In the articles reviewed, just over half of the skills identified were intrinsic skills. Future geospatial research should explore how best to incorporate spatial skills into the classroom over long time periods and should focus on the process of spatial reasoning and the strategies students use when problem-solving about spatial phenomena, especially at the elementary and secondary school level. Educators can use the resources outlined in this review to engage in spatialising their curricula.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"59 1","pages":"147 - 204"},"PeriodicalIF":4.9,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41486584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Climate change education: the problem with walking away from disciplines","authors":"Efrat Eilam","doi":"10.1080/03057267.2021.2011589","DOIUrl":"https://doi.org/10.1080/03057267.2021.2011589","url":null,"abstract":"ABSTRACT Globally climate change (CC) is scarcely addressed in school curricula, and school graduates are mostly uneducated about climate change. The purpose of this paper is to make a case for conceptualising CC as a discipline, and to further argue why CC should be included in school curricula as a disciplinary-subject. An initial examination of CC in curricula globally reveals that the main approach for including CC in the curriculum is the cross-curriculum approach. The problems associated with this approach are discussed in regard to the challenges posed to the integrity of the CC body of knowledge, and to the teaching and learning. The paper continues to build a case for conceptualising CC as a discipline in its own right. It explains the notions of: disciplines, subjects, and disciplinary-subjects. Further, it describes the disciplinary characteristics of CC, and the benefits of including CC in the curriculum as a disciplinary-subject. However, curricular resistance issues are identified and discussed. These resistances are addressed by considering evidence derived from curriculum theory, cognitive psychology and philosophy of science for supporting the inclusion of a CC disciplinary-subject. Finally, the challenges in establishing a CC disciplinary-subject are discussed. The paper concludes by considering implications for further research.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"58 1","pages":"231 - 264"},"PeriodicalIF":4.9,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46053759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Undergraduate students’ approaches to learning biology: a systematic review of the literature","authors":"Angela N. Google, Grant E. Gardner, A. Grinath","doi":"10.1080/03057267.2021.2004005","DOIUrl":"https://doi.org/10.1080/03057267.2021.2004005","url":null,"abstract":"ABSTRACT For decades, biology education researchers have made efforts towards engaging undergraduate students in the process of science and assisting students in their development of deep approaches to learning in the field. Research indicates that students who adopt deep approaches or study strategies make meaningful connections with course material and as a result have higher academic achievement. Studies have identified several factors that influence student’s adoption of an approach to learning. Given the context-dependent nature of approaches to learning, there is a growing need to understand how students approach learning in a discipline-specific contexts. This systematic review resulted in the analysis of 34 empirical articles that examined how researchers have measured approaches to learning in the context of undergraduate biology, and how the findings of these reports shape our understanding of how students study biology. Implications of this work support a broader consideration for how socio-cultural factors influence student approaches to learning biology, a need for an increased use of mixed-methodological approaches to research, and a clearer alignment between course assessment and desired student approaches to learning biology.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"59 1","pages":"25 - 66"},"PeriodicalIF":4.9,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47438224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response of science learners to contradicting information: a review of research","authors":"Patrice Potvin","doi":"10.1080/03057267.2021.2004006","DOIUrl":"https://doi.org/10.1080/03057267.2021.2004006","url":null,"abstract":"ABSTRACT This article presents a critical and systematic review of the science education research literature that explores the response of learners to contradicting information (anomalous data). The review is framed in the cognitive conflict process model (CCPM) and provides an analysis of (1) the types and frequency of possible responses, (2) the conditions by which cognitive conflict is successfully triggered, and (3) the preliminary conditions that eventually favour conceptual changes. The results conclude, among other things, that anomaly-induced cognitive conflict is rather inefficient if triggered in isolation, without supportive processing activities, or without the initial availability of conceptual alternatives. A prospective synthesis is then provided, supporting Ohlsson’s view of science education activities that concentrate on cognitive utility rather than emphasising on discrediting initial conceptions. A reflection about the integration of such considerations with contemporary issues is also provided.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"59 1","pages":"67 - 108"},"PeriodicalIF":4.9,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41835671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Bouchée, L. de Putter - Smits, M. Thurlings, B. Pepin
{"title":"Towards a better understanding of conceptual difficulties in introductory quantum physics courses","authors":"T. Bouchée, L. de Putter - Smits, M. Thurlings, B. Pepin","doi":"10.1080/03057267.2021.1963579","DOIUrl":"https://doi.org/10.1080/03057267.2021.1963579","url":null,"abstract":"ABSTRACT Research on teaching and learning quantum physics (QP) frequently explores students’ conceptual difficulties to identify common patterns in their reasoning. The abstractness of QP is often found to be at the origin of students’ conceptual difficulties. Due to this abstract nature students resort to common sense reasoning or classical thinking when they make meaning of QP phenomena. In this literature review, the ‘abstractness’ is closely investigated and nuanced to uncover what reasons for the abstractness students experience. Four reasons for students’ conceptual difficulties can be categorised under the abstract nature of QP. These reasons are that students struggle a) to relate the mathematical formalism of QP to experiences in the physical world; b) to interpret counterintuitive QP phenomena and concepts; c) to transit from a deterministic to a probabilistic worldview; and d) to understand the limitations of language to express quantum phenomena, concepts, and objects. Combining these four reasons allows us to better understand the origin of conceptual difficulties in QP and why these difficulties persist over time. The implications of these findings for research and teaching practice are discussed.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"58 1","pages":"183 - 202"},"PeriodicalIF":4.9,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42588025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kate Davis, A. Fitzgerald, M. Power, T. Leach, Neil Martin, Stephanie Piper, Retd Singh, Shelley Dunlop
{"title":"Understanding the conditions informing successful STEM clubs: What does the evidence base tell us?","authors":"Kate Davis, A. Fitzgerald, M. Power, T. Leach, Neil Martin, Stephanie Piper, Retd Singh, Shelley Dunlop","doi":"10.1080/03057267.2021.1969168","DOIUrl":"https://doi.org/10.1080/03057267.2021.1969168","url":null,"abstract":"ABSTRACT STEM (Science, Technology, Engineering, Mathematics) clubs are gaining momentum as a means for engaging students in STEM-related activities. Despite this growth, there have been limited attempts to examine the conditions that inform practice in these informal educational spaces. This paper addresses that gap through a comprehensive literature review of empirical and practitioner publications, with a focus on synthesising the approaches that support STEM clubs to be effective learning environments. In total, 33 papers were included in this review. Through a rigorous literature review process, the research team identified a number of key focus areas that support the achievement of learning outcomes and programme sustainability. These focus areas are grouped into three key themes – club management, environment, and program evaluation – that STEM club practitioners should attend to in order to ensure a well-informed approach. Within in each theme a number of sub-dimensions were identified, which provide practical insights and lived examples of how these conditions can be enacted within STEM clubs in ways that speak to quality. The evidence-based findings presented in this paper can be used by practitioners to guide STEM club practice. Further, the paper identifies where research is required to explore contemporary practice in informal education settings.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"59 1","pages":"1 - 23"},"PeriodicalIF":4.9,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49153619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A systematic review of computational thinking in science classrooms","authors":"A. Ogegbo, U. Ramnarain","doi":"10.1080/03057267.2021.1963580","DOIUrl":"https://doi.org/10.1080/03057267.2021.1963580","url":null,"abstract":"ABSTRACT Computational thinking (CT) has been described as an essential skill that should be learned by everyone and can, therefore, be included in their skill set. Computational thinking uses essential principles in computer science for solving problems, understanding complex systems, and human behaviour. This way of thinking has significant consequences for teaching and learning science subjects at elementary and high school levels. In this review, we analyse and discuss the results from 23 studies and highlight the methodology, different strategies, and assessment practices used to promote the integration of computational thinking within science classrooms. We also give an overview of how computational thinking is being taught in science classrooms and describe tools available for teaching computational thinking in science instruction. Findings showed the value of using modelling-based pedagogy in incorporating key computational thinking skills within science instruction and suggests that educators should deploy effective technology tools to enhance the deductive and inductive teaching of science concepts using computational thinking framework.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"58 1","pages":"203 - 230"},"PeriodicalIF":4.9,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03057267.2021.1963580","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49162521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}