Alena Svobodová Kovaříková, Lenka Stixová, Aleš Kovařík, Eva Bártová
{"title":"PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin.","authors":"Alena Svobodová Kovaříková, Lenka Stixová, Aleš Kovařík, Eva Bártová","doi":"10.1186/s13072-023-00501-x","DOIUrl":"https://doi.org/10.1186/s13072-023-00501-x","url":null,"abstract":"<p><p>RNA modifications have been known for many years, but their function has not been fully elucidated yet. For instance, the regulatory role of acetylation on N4-cytidine (ac4C) in RNA can be explored not only in terms of RNA stability and mRNA translation but also in DNA repair. Here, we observe a high level of ac4C RNA at DNA lesions in interphase cells and irradiated cells in telophase. Ac4C RNA appears in the damaged genome from 2 to 45 min after microirradiation. However, RNA cytidine acetyltransferase NAT10 did not accumulate to damaged sites, and NAT10 depletion did not affect the pronounced recruitment of ac4C RNA to DNA lesions. This process was not dependent on the G1, S, and G2 cell cycle phases. In addition, we observed that the PARP inhibitor, olaparib, prevents the recruitment of ac4C RNA to damaged chromatin. Our data imply that the acetylation of N4-cytidine, especially in small RNAs, has an important role in mediating DNA damage repair. Ac4C RNA likely causes de-condensation of chromatin in the vicinity of DNA lesions, making it accessible for other DNA repair factors involved in the DNA damage response. Alternatively, RNA modifications, including ac4C, could be direct markers of damaged RNAs.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"26"},"PeriodicalIF":3.9,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10010974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashley B Reers, Rodriel Bautista, James McLellan, Beatriz Morales, Rolando Garza, Sebastiaan Bol, Kirsten K Hanson, Evelien M Bunnik
{"title":"Histone modification analysis reveals common regulators of gene expression in liver and blood stage merozoites of Plasmodium parasites.","authors":"Ashley B Reers, Rodriel Bautista, James McLellan, Beatriz Morales, Rolando Garza, Sebastiaan Bol, Kirsten K Hanson, Evelien M Bunnik","doi":"10.1186/s13072-023-00500-y","DOIUrl":"10.1186/s13072-023-00500-y","url":null,"abstract":"<p><p>Gene expression in malaria parasites is subject to various layers of regulation, including histone post-translational modifications (PTMs). Gene regulatory mechanisms have been extensively studied during the main developmental stages of Plasmodium parasites inside erythrocytes, from the ring stage following invasion to the schizont stage leading up to egress. However, gene regulation in merozoites that mediate the transition from one host cell to the next is an understudied area of parasite biology. Here, we sought to characterize gene expression and the corresponding histone PTM landscape during this stage of the parasite lifecycle through RNA-seq and ChIP-seq on P. falciparum blood stage schizonts, merozoites, and rings, as well as P. berghei liver stage merozoites. In both hepatic and erythrocytic merozoites, we identified a subset of genes with a unique histone PTM profile characterized by a region of H3K4me3 depletion in their promoter. These genes were upregulated in hepatic and erythrocytic merozoites and rings, had roles in protein export, translation, and host cell remodeling, and shared a DNA motif. These results indicate that similar regulatory mechanisms may underlie merozoite formation in the liver and blood stages. We also observed that H3K4me2 was deposited in gene bodies of gene families encoding variant surface antigens in erythrocytic merozoites, which may facilitate switching of gene expression between different members of these families. Finally, H3K18me and H2K27me were uncoupled from gene expression and were enriched around the centromeres in erythrocytic schizonts and merozoites, suggesting potential roles in the maintenance of chromosomal organization during schizogony. Together, our results demonstrate that extensive changes in gene expression and histone landscape occur during the schizont-to-ring transition to facilitate productive erythrocyte infection. The dynamic remodeling of the transcriptional program in hepatic and erythrocytic merozoites makes this stage attractive as a target for novel anti-malarial drugs that may have activity against both the liver and blood stages.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"25"},"PeriodicalIF":4.2,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9816933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alla Krasikova, Tatiana Kulikova, Juan Sebastian Rodriguez Ramos, Antonina Maslova
{"title":"Assignment of the somatic A/B compartments to chromatin domains in giant transcriptionally active lampbrush chromosomes.","authors":"Alla Krasikova, Tatiana Kulikova, Juan Sebastian Rodriguez Ramos, Antonina Maslova","doi":"10.1186/s13072-023-00499-2","DOIUrl":"https://doi.org/10.1186/s13072-023-00499-2","url":null,"abstract":"<p><strong>Background: </strong>The three-dimensional configuration of the eukaryotic genome is an emerging area of research. Chromosome conformation capture outlined genome segregation into large scale A and B compartments corresponding mainly to transcriptionally active and repressive chromatin. It remains unknown how the compartmentalization of the genome changes in growing oocytes of animals with hypertranscriptional type of oogenesis. Such oocytes are characterized by highly elongated chromosomes, called lampbrush chromosomes, which acquire a typical chromomere-loop appearance, representing one of the classical model systems for exploring the structural and functional organization of chromatin domains.</p><p><strong>Results: </strong>Here, we compared the distribution of A/B compartments in chicken somatic cells with chromatin domains in lampbrush chromosomes. We found that in lampbrush chromosomes, the extended chromatin domains, restricted by compartment boundaries in somatic cells, disintegrate into individual chromomeres. Next, we performed FISH-mapping of the genomic loci, which belong to A or B chromatin compartments as well as to A/B compartment transition regions in embryonic fibroblasts on isolated lampbrush chromosomes. We found, that in chicken lampbrush chromosomes, clusters of dense compact chromomeres bearing short lateral loops and enriched with repressive epigenetic modifications generally correspond to constitutive B compartments in somatic cells. A compartments align with lampbrush chromosome segments with smaller, less compact chromomeres, longer lateral loops, and a higher transcriptional status. Clusters of small loose chromomeres with relatively long lateral loops show no obvious correspondence with either A or B compartment identity. Some genes belonging to facultative B (sub-) compartments can be tissue-specifically transcribed during oogenesis, forming distinct lateral loops.</p><p><strong>Conclusions: </strong>Here, we established a correspondence between the A/B compartments in somatic interphase nucleus and chromatin segments in giant lampbrush chromosomes from diplotene stage oocytes. The chromomere-loop structure of the genomic regions corresponding to interphase A and B compartments reveals the difference in how they are organized at the level of chromatin domains. The results obtained also suggest that gene-poor regions tend to be packed into chromomeres.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"24"},"PeriodicalIF":3.9,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10028209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Salma, Elina Alaterre, Jérôme Moreaux, Eric Soler
{"title":"Var∣Decrypt: a novel and user-friendly tool to explore and prioritize variants in whole-exome sequencing data.","authors":"Mohammad Salma, Elina Alaterre, Jérôme Moreaux, Eric Soler","doi":"10.1186/s13072-023-00497-4","DOIUrl":"https://doi.org/10.1186/s13072-023-00497-4","url":null,"abstract":"<p><strong>Background: </strong>High-throughput sequencing (HTS) offers unprecedented opportunities for the discovery of causative gene variants in multiple human disorders including cancers, and has revolutionized clinical diagnostics. However, despite more than a decade of use of HTS-based assays, extracting relevant functional information from whole-exome sequencing (WES) data remains challenging, especially for non-specialists lacking in-depth bioinformatic skills.</p><p><strong>Results: </strong>To address this limitation, we developed Var∣Decrypt, a web-based tool designed to greatly facilitate WES data browsing and analysis. Var∣Decrypt offers a wide range of gene and variant filtering possibilities, clustering and enrichment tools, providing an efficient way to derive patient-specific functional information and to prioritize gene variants for functional analyses. We applied Var∣Decrypt on WES datasets of 10 acute erythroid leukemia patients, a rare and aggressive form of leukemia, and recovered known disease oncogenes in addition to novel putative drivers. We additionally validated the performance of Var∣Decrypt using an independent dataset of ~ 90 multiple myeloma WES, recapitulating the identified deregulated genes and pathways, showing the general applicability and versatility of Var∣Decrypt for WES analysis.</p><p><strong>Conclusion: </strong>Despite years of use of WES in human health for diagnosis and discovery of disease drivers, WES data analysis still remains a complex task requiring advanced bioinformatic skills. In that context, there is a need for user-friendly all-in-one dedicated tools for data analysis, to allow biologists and clinicians to extract relevant biological information from patient datasets. Here, we provide Var∣Decrypt (trial version accessible here: https://vardecrypt.com/app/vardecrypt ), a simple and intuitive Rshiny application created to fill this gap. Source code and detailed user tutorial are available at https://gitlab.com/mohammadsalma/vardecrypt .</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"23"},"PeriodicalIF":3.9,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi‑C, Micro‑C, and promoter capture Micro‑C.","authors":"Beoung Hun Lee, Zexun Wu, Suhn K Rhie","doi":"10.1186/s13072-023-00498-3","DOIUrl":"https://doi.org/10.1186/s13072-023-00498-3","url":null,"abstract":"","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"22"},"PeriodicalIF":3.9,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9954531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Igor S Tolokh, Nicholas Allen Kinney, Igor V Sharakhov, Alexey V Onufriev
{"title":"Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin.","authors":"Igor S Tolokh, Nicholas Allen Kinney, Igor V Sharakhov, Alexey V Onufriev","doi":"10.1186/s13072-023-00492-9","DOIUrl":"10.1186/s13072-023-00492-9","url":null,"abstract":"<p><strong>Background: </strong>Interactions among topologically associating domains (TADs), and between the nuclear envelope (NE) and lamina-associated domains (LADs) are expected to shape various aspects of three-dimensional (3D) chromatin structure and dynamics; however, relevant genome-wide experiments that may provide statistically significant conclusions remain difficult.</p><p><strong>Results: </strong>We have developed a coarse-grained dynamical model of D. melanogaster nuclei at TAD resolution that explicitly accounts for four distinct epigenetic classes of TADs and LAD-NE interactions. The model is parameterized to reproduce the experimental Hi-C map of the wild type (WT) nuclei; it describes time evolution of the chromatin over the G1 phase of the interphase. The simulations include an ensemble of nuclei, corresponding to the experimentally observed set of several possible mutual arrangements of chromosomal arms. The model is validated against multiple structural features of chromatin from several different experiments not used in model development. Predicted positioning of all LADs at the NE is highly dynamic-the same LAD can attach, detach and move far away from the NE multiple times during interphase. The probabilities of LADs to be in contact with the NE vary by an order of magnitude, despite all having the same affinity to the NE in the model. These probabilities are mostly determined by a highly variable local linear density of LADs along the genome, which also has the same strong effect on the predicted positioning of individual TADs -- higher probability of a TAD to be near NE is largely determined by a higher linear density of LADs surrounding this TAD. The distribution of LADs along the chromosome chains plays a notable role in maintaining a non-random average global structure of chromatin. Relatively high affinity of LADs to the NE in the WT nuclei substantially reduces sensitivity of the global radial chromatin distribution to variations in the strength of TAD-TAD interactions compared to the lamin depleted nuclei, where a small (0.5 kT) increase of cross-type TAD-TAD interactions doubles the chromatin density in the central nucleus region.</p><p><strong>Conclusions: </strong>A dynamical model of the entire fruit fly genome makes multiple genome-wide predictions of biological interest. The distribution of LADs along the chromatin chains affects their probabilities to be in contact with the NE and radial positioning of highly mobile TADs, playing a notable role in creating a non-random average global structure of the chromatin. We conjecture that an important role of attractive LAD-NE interactions is to stabilize global chromatin structure against inevitable cell-to-cell variations in TAD-TAD interactions.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"21"},"PeriodicalIF":4.2,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10350898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emanuele Capra, F Turri, B Lazzari, S Biffani, A Lange Consiglio, P Ajmone Marsan, A Stella, F Pizzi
{"title":"CpG DNA methylation changes during epididymal sperm maturation in bulls.","authors":"Emanuele Capra, F Turri, B Lazzari, S Biffani, A Lange Consiglio, P Ajmone Marsan, A Stella, F Pizzi","doi":"10.1186/s13072-023-00495-6","DOIUrl":"https://doi.org/10.1186/s13072-023-00495-6","url":null,"abstract":"<p><strong>Background: </strong>During epididymal transit spermatozoa acquire specific morphological features which enhance their ability to swim in a progressive manner and interact with the oocytes. At the same time, sperm cells undergo specific molecular rearrangements essential for the fertilizing sperm to drive a correct embryo development. To assess epigenetic sperm changes during epididymal maturation, the caput, corpus and cauda epididymis sperm tracts were isolated from eight bulls and characterized for different sperm quality parameters and for CpG DNA methylation using Reduced Representation Bisulfite Sequencing (RRBS) able to identify differentially methylated regions (DMRs) in higher CpG density regions.</p><p><strong>Results: </strong>Caput sperm showed significant variation in motility and sperm kinetics variables, whereas spermatozoa collected from the corpus presented morphology variation and significant alterations in variables related to acrosome integrity. A total of 57,583 methylated regions were identified across the eight bulls, showing a significantly diverse distribution for sperm collected in the three epididymal regions. Differential methylation was observed between caput vs corpus (n = 11,434), corpus vs cauda (n = 12,372) and caput vs cauda (n = 2790). During epididymal transit a high proportion of the epigenome was remodeled, showing several regions in which methylation decreases from caput to corpus and increases from corpus to cauda.</p><p><strong>Conclusions: </strong>Specific CpG DNA methylation changes in sperm isolated from the caput, corpus, and cauda epididymis tracts are likely to refine the sperm epigenome during sperm maturation, potentially impacting sperm fertilization ability and spatial organization of the genome during early embryo development.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"20"},"PeriodicalIF":3.9,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9561459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adriana Di-Battista, Bianca Pereira Favilla, Malú Zamariolli, Natália Nunes, Alexandre Defelicibus, Lucia Armelin-Correa, Israel Tojal da Silva, Alexandre Reymond, Mariana Moyses-Oliveira, Maria Isabel Melaragno
{"title":"Premature ovarian insufficiency is associated with global alterations in the regulatory landscape and gene expression in balanced X-autosome translocations.","authors":"Adriana Di-Battista, Bianca Pereira Favilla, Malú Zamariolli, Natália Nunes, Alexandre Defelicibus, Lucia Armelin-Correa, Israel Tojal da Silva, Alexandre Reymond, Mariana Moyses-Oliveira, Maria Isabel Melaragno","doi":"10.1186/s13072-023-00493-8","DOIUrl":"https://doi.org/10.1186/s13072-023-00493-8","url":null,"abstract":"<p><strong>Background: </strong>Patients with balanced X-autosome translocations and premature ovarian insufficiency (POI) constitute an interesting paradigm to study the effect of chromosome repositioning. Their breakpoints are clustered within cytobands Xq13-Xq21, 80% of them in Xq21, and usually, no gene disruption can be associated with POI phenotype. As deletions within Xq21 do not cause POI, and since different breakpoints and translocations with different autosomes lead to this same gonadal phenotype, a \"position effect\" is hypothesized as a possible mechanism underlying POI pathogenesis.</p><p><strong>Objective and methods: </strong>To study the effect of the balanced X-autosome translocations that result in POI, we fine-mapped the breakpoints in six patients with POI and balanced X-autosome translocations and addressed gene expression and chromatin accessibility changes in four of them.</p><p><strong>Results: </strong>We observed differential expression in 85 coding genes, associated with protein regulation, multicellular regulation, integrin signaling, and immune response pathways, and 120 differential peaks for the three interrogated histone marks, most of which were mapped in high-activity chromatin state regions. The integrative analysis between transcriptome and chromatin data pointed to 12 peaks mapped less than 2 Mb from 11 differentially expressed genes in genomic regions not related to the patients' chromosomal rearrangement, suggesting that translocations have broad effects on the chromatin structure.</p><p><strong>Conclusion: </strong>Since a wide impact on gene regulation was observed in patients, our results observed in this study support the hypothesis of position effect as a pathogenic mechanism for premature ovarian insufficiency associated with X-autosome translocations. This work emphasizes the relevance of chromatin changes in structural variation, since it advances our knowledge of the impact of perturbations in the regulatory landscape within interphase nuclei, resulting in the position effect pathogenicity.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"19"},"PeriodicalIF":3.9,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9517806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eva Monte-Serrano, Patricia Morejón-García, Ignacio Campillo-Marcos, Aurora Campos-Díaz, Elena Navarro-Carrasco, Pedro A Lazo
{"title":"The pattern of histone H3 epigenetic posttranslational modifications is regulated by the VRK1 chromatin kinase.","authors":"Eva Monte-Serrano, Patricia Morejón-García, Ignacio Campillo-Marcos, Aurora Campos-Díaz, Elena Navarro-Carrasco, Pedro A Lazo","doi":"10.1186/s13072-023-00494-7","DOIUrl":"10.1186/s13072-023-00494-7","url":null,"abstract":"<p><strong>Background: </strong>Dynamic chromatin remodeling is associated with changes in the epigenetic pattern of histone acetylations and methylations required for processes based on dynamic chromatin remodeling and implicated in different nuclear functions. These histone epigenetic modifications need to be coordinated, a role that may be mediated by chromatin kinases such as VRK1, which phosphorylates histones H3 and H2A.</p><p><strong>Methods: </strong>The effect of VRK1 depletion and VRK1 inhibitor, VRK-IN-1, on the acetylation and methylation of histone H3 in K4, K9 and K27 was determined under different conditions, arrested or proliferating cells, in A549 lung adenocarcinoma and U2OS osteosarcoma cells.</p><p><strong>Results: </strong>Chromatin organization is determined by the phosphorylation pattern of histones mediated by different types of enzymes. We have studied how the VRK1 chromatin kinase can alter the epigenetic posttranslational modifications of histones by using siRNA, a specific inhibitor of this kinase (VRK-IN-1), and of histone acetyl and methyl transferases, as well as histone deacetylase and demethylase. Loss of VRK1 implicated a switch in the state of H3K9 posttranslational modifications. VRK1 depletion/inhibition causes a loss of H3K9 acetylation and facilitates its methylation. This effect is similar to that of the KAT inhibitor C646, and to KDM inhibitors as iadademstat (ORY-1001) or JMJD2 inhibitor. Alternatively, HDAC inhibitors (selisistat, panobinostat, vorinostat) and KMT inhibitors (tazemetostat, chaetocin) have the opposite effect of VRK1 depletion or inhibition, and cause increase of H3K9ac and a decrease of H3K9me3. VRK1 stably interacts with members of these four enzyme families. However, VRK1 can only play a role on these epigenetic modifications by indirect mechanisms in which these epigenetic enzymes are likely targets to be regulated and coordinated by VRK1.</p><p><strong>Conclusions: </strong>The chromatin kinase VRK1 regulates the epigenetic patterns of histone H3 acetylation and methylation in lysines 4, 9 and 27. VRK1 is a master regulator of chromatin organization associated with its specific functions, such as transcription or DNA repair.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"18"},"PeriodicalIF":3.9,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9525964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Loss of CpG island immunity to DNA methylation induced by mutation.","authors":"Bernhard Horsthemke, Adrian Bird","doi":"10.1186/s13072-023-00488-5","DOIUrl":"https://doi.org/10.1186/s13072-023-00488-5","url":null,"abstract":"<p><p>The inheritance of acquired traits in mammals is a highly controversial topic in biology. Recently, Takahashi et al. (Cell 186:715-731, 2023) have reported that insertion of CpG-free DNA into a CpG island (CGI) can induce DNA methylation of the CGI and that this aberrant methylation pattern can be transmitted across generations, even after removal of the foreign DNA. These results were interpreted as evidence for transgenerational inheritance of acquired DNA methylation patterns. Here, we discuss several interpretational issues raised by this study and consider alternative explanations.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"17"},"PeriodicalIF":3.9,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9525053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}