{"title":"Maximal-Simultaneous Approximation by Faber Series in Bergman Spaces","authors":"D. Israfilov","doi":"10.1007/s40315-023-00496-2","DOIUrl":"https://doi.org/10.1007/s40315-023-00496-2","url":null,"abstract":"","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77434861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Condition Number of the Newton Interpolation on the Unit Disk","authors":"P. Tung, L. Cuong, Phung Van Manh","doi":"10.1007/s40315-023-00497-1","DOIUrl":"https://doi.org/10.1007/s40315-023-00497-1","url":null,"abstract":"","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75534823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weighted Contractivity of Differential Operators on Fock Spaces","authors":"D. Kalaj","doi":"10.1007/s40315-023-00493-5","DOIUrl":"https://doi.org/10.1007/s40315-023-00493-5","url":null,"abstract":"","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72447805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Inverse Poletsky Inequality with a Cotangent Dilatation","authors":"E. Sevost’yanov, V. Targonskii","doi":"10.1007/s40315-023-00495-3","DOIUrl":"https://doi.org/10.1007/s40315-023-00495-3","url":null,"abstract":"","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76245519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Walsh’s Conformal Map Onto Lemniscatic Domains for Polynomial Pre-images II","authors":"Klaus Schiefermayr, Olivier Sète","doi":"10.1007/s40315-023-00492-6","DOIUrl":"https://doi.org/10.1007/s40315-023-00492-6","url":null,"abstract":"Abstract We consider Walsh’s conformal map from the exterior of a set $$E=bigcup _{j=1}^{ell }E_j$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>⋃</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>ℓ</mml:mi> </mml:msubsup> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> </mml:math> consisting of $$ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> compact disjoint components onto a lemniscatic domain. In particular, we are interested in the case when E is a polynomial preimage of $$[-1,1]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , i.e., when $$E=P^{-1}([-1,1])$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where P is an algebraic polynomial of degree n . Of special interest are the exponents and the centers of the lemniscatic domain. In the first part of this series of papers, a very simple formula for the exponents has been derived. In this paper, based on general results of the first part, we give an iterative method for computing the centers when E is the union of $$ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> intervals. Once the centers are known, the corresponding Walsh map can be computed numerically. In addition, if E consists of $$ell =2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> or $$ell =3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> components satisfying certain symmetry relations then the centers and the corresponding Walsh map are given by explicit formulas. All our theorems are illustrated with analytical or numerical examples.","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135904304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Canonical Embeddings of Pairs of Arcs and Extremal Problems on Ring Domains","authors":"A. Solynin","doi":"10.1007/s40315-023-00491-7","DOIUrl":"https://doi.org/10.1007/s40315-023-00491-7","url":null,"abstract":"","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88072065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Method of Boundary Value Problems in the Study of the Basis Properties of Perturbed System of Exponents in Banach Function Spaces","authors":"B. Bilalov, S. Sadigova, V. G. Alili","doi":"10.1007/s40315-023-00488-2","DOIUrl":"https://doi.org/10.1007/s40315-023-00488-2","url":null,"abstract":"","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80279756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Composition Operators on Sobolev Spaces and Q-Homeomorphisms","authors":"A. Menovschikov, A. Ukhlov","doi":"10.1007/s40315-023-00484-6","DOIUrl":"https://doi.org/10.1007/s40315-023-00484-6","url":null,"abstract":"","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80725346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Local Cauchy Integral Formula for Slice-Regular Functions","authors":"Alessandro Perotti","doi":"10.1007/s40315-023-00485-5","DOIUrl":"https://doi.org/10.1007/s40315-023-00485-5","url":null,"abstract":"Abstract We prove a local Cauchy-type integral formula for slice-regular functions. The formula is obtained as a corollary of a general integral representation formula where the integration is performed on the boundary of an open subset of the quaternionic space, with no requirement of axial symmetry. As a step towards the proof, we provide a decomposition of a slice-regular function as a combination of two axially monogenic functions.","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135478840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Difference Independence of the Euler Gamma Function and the Riemann Zeta Function","authors":"Amina Bibi, Xiao-Min Li, H. Yi","doi":"10.1007/s40315-023-00483-7","DOIUrl":"https://doi.org/10.1007/s40315-023-00483-7","url":null,"abstract":"","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85933627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}