多项式预像的lemnisctic域上的Walsh保角映射II

Pub Date : 2023-08-07 DOI:10.1007/s40315-023-00492-6
Klaus Schiefermayr, Olivier Sète
{"title":"多项式预像的lemnisctic域上的Walsh保角映射II","authors":"Klaus Schiefermayr, Olivier Sète","doi":"10.1007/s40315-023-00492-6","DOIUrl":null,"url":null,"abstract":"Abstract We consider Walsh’s conformal map from the exterior of a set $$E=\\bigcup _{j=1}^{\\ell }E_j$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>⋃</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>ℓ</mml:mi> </mml:msubsup> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> </mml:math> consisting of $$\\ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> compact disjoint components onto a lemniscatic domain. In particular, we are interested in the case when E is a polynomial preimage of $$[-1,1]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , i.e., when $$E=P^{-1}([-1,1])$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where P is an algebraic polynomial of degree n . Of special interest are the exponents and the centers of the lemniscatic domain. In the first part of this series of papers, a very simple formula for the exponents has been derived. In this paper, based on general results of the first part, we give an iterative method for computing the centers when E is the union of $$\\ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> intervals. Once the centers are known, the corresponding Walsh map can be computed numerically. In addition, if E consists of $$\\ell =2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> or $$\\ell =3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> components satisfying certain symmetry relations then the centers and the corresponding Walsh map are given by explicit formulas. All our theorems are illustrated with analytical or numerical examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Walsh’s Conformal Map Onto Lemniscatic Domains for Polynomial Pre-images II\",\"authors\":\"Klaus Schiefermayr, Olivier Sète\",\"doi\":\"10.1007/s40315-023-00492-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider Walsh’s conformal map from the exterior of a set $$E=\\\\bigcup _{j=1}^{\\\\ell }E_j$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>⋃</mml:mo> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>ℓ</mml:mi> </mml:msubsup> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> </mml:math> consisting of $$\\\\ell $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ℓ</mml:mi> </mml:math> compact disjoint components onto a lemniscatic domain. In particular, we are interested in the case when E is a polynomial preimage of $$[-1,1]$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , i.e., when $$E=P^{-1}([-1,1])$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where P is an algebraic polynomial of degree n . Of special interest are the exponents and the centers of the lemniscatic domain. In the first part of this series of papers, a very simple formula for the exponents has been derived. In this paper, based on general results of the first part, we give an iterative method for computing the centers when E is the union of $$\\\\ell $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ℓ</mml:mi> </mml:math> intervals. Once the centers are known, the corresponding Walsh map can be computed numerically. In addition, if E consists of $$\\\\ell =2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> or $$\\\\ell =3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ℓ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> components satisfying certain symmetry relations then the centers and the corresponding Walsh map are given by explicit formulas. All our theorems are illustrated with analytical or numerical examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-023-00492-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40315-023-00492-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑了由$$\ell $$个紧不相交分量组成的集合$$E=\bigcup _{j=1}^{\ell }E_j$$ E =∑j = 1∑E j的外部到一个模域上的Walsh共形映射。特别地,我们对E是$$[-1,1]$$[- 1,1]的多项式原像的情况感兴趣,即$$E=P^{-1}([-1,1])$$ E = P - 1([- 1,1]),其中P是n次的代数多项式。我们特别感兴趣的是几何域的指数和中心。在本系列文章的第一部分,我们推导了一个非常简单的指数公式。本文在第一部分的一般结果的基础上,给出了E为$$\ell $$ - r区间的并时计算中心的迭代方法。一旦知道了这些中心,相应的沃尔什图就可以用数值方法计算出来。另外,如果E由满足一定对称关系的$$\ell =2$$ r = 2或$$\ell =3$$ r = 3分量组成,则用显式公式给出其中心和对应的Walsh映射。我们所有的定理都用解析或数值例子加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Walsh’s Conformal Map Onto Lemniscatic Domains for Polynomial Pre-images II

分享
查看原文
Walsh’s Conformal Map Onto Lemniscatic Domains for Polynomial Pre-images II
Abstract We consider Walsh’s conformal map from the exterior of a set $$E=\bigcup _{j=1}^{\ell }E_j$$ E = j = 1 E j consisting of $$\ell $$ compact disjoint components onto a lemniscatic domain. In particular, we are interested in the case when E is a polynomial preimage of $$[-1,1]$$ [ - 1 , 1 ] , i.e., when $$E=P^{-1}([-1,1])$$ E = P - 1 ( [ - 1 , 1 ] ) , where P is an algebraic polynomial of degree n . Of special interest are the exponents and the centers of the lemniscatic domain. In the first part of this series of papers, a very simple formula for the exponents has been derived. In this paper, based on general results of the first part, we give an iterative method for computing the centers when E is the union of $$\ell $$ intervals. Once the centers are known, the corresponding Walsh map can be computed numerically. In addition, if E consists of $$\ell =2$$ = 2 or $$\ell =3$$ = 3 components satisfying certain symmetry relations then the centers and the corresponding Walsh map are given by explicit formulas. All our theorems are illustrated with analytical or numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信