切片正则函数的一个局部柯西积分公式

IF 0.6 4区 数学 Q3 MATHEMATICS
Alessandro Perotti
{"title":"切片正则函数的一个局部柯西积分公式","authors":"Alessandro Perotti","doi":"10.1007/s40315-023-00485-5","DOIUrl":null,"url":null,"abstract":"Abstract We prove a local Cauchy-type integral formula for slice-regular functions. The formula is obtained as a corollary of a general integral representation formula where the integration is performed on the boundary of an open subset of the quaternionic space, with no requirement of axial symmetry. As a step towards the proof, we provide a decomposition of a slice-regular function as a combination of two axially monogenic functions.","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"19 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Local Cauchy Integral Formula for Slice-Regular Functions\",\"authors\":\"Alessandro Perotti\",\"doi\":\"10.1007/s40315-023-00485-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove a local Cauchy-type integral formula for slice-regular functions. The formula is obtained as a corollary of a general integral representation formula where the integration is performed on the boundary of an open subset of the quaternionic space, with no requirement of axial symmetry. As a step towards the proof, we provide a decomposition of a slice-regular function as a combination of two axially monogenic functions.\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-023-00485-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40315-023-00485-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要证明了切片正则函数的一个局部柯西型积分公式。该公式作为一般积分表示公式的推论得到,其中积分在四元数空间的开放子集的边界上进行,不要求轴对称。作为证明的一步,我们提供了一个分解的切片正则函数作为两个轴向单基因函数的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Local Cauchy Integral Formula for Slice-Regular Functions
Abstract We prove a local Cauchy-type integral formula for slice-regular functions. The formula is obtained as a corollary of a general integral representation formula where the integration is performed on the boundary of an open subset of the quaternionic space, with no requirement of axial symmetry. As a step towards the proof, we provide a decomposition of a slice-regular function as a combination of two axially monogenic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信