Yong Wang , Bowen Li , Qinyao Pan , Jie Zhong , Ning Li
{"title":"Asymptotic synchronization in coupled Boolean and probabilistic Boolean networks with delays","authors":"Yong Wang , Bowen Li , Qinyao Pan , Jie Zhong , Ning Li","doi":"10.1016/j.nahs.2024.101552","DOIUrl":"10.1016/j.nahs.2024.101552","url":null,"abstract":"<div><div>This paper addresses the delay output synchronization in a coupled system of a Boolean network and a probabilistic Boolean network with state delays. We model the system as a Markov chain-based augmented system, simplifying the synchronization problem to a delay set stability issue. Analysis of the Markov chain’s transition matrix through positive recurrent closed sets yields synchronization criteria, both in probability and in probability one, based on Boolean matrix characteristics and matrix splitting techniques. These methods avoid the cumulative multiplication of high-dimensional matrices and reduce the complexity of the computation. Besides, the study progresses to explore asymptotic output synchronization, employing these methods. To demonstrate the practicality and effectiveness of the proposed methodology, several illustrative examples are provided.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101552"},"PeriodicalIF":3.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asynchronous intermittent sampled-data control for delayed complex dynamical networks with Lévy noise","authors":"Hui Zhou , Jingheng Feng , Ju H. Park , Wenxue Li","doi":"10.1016/j.nahs.2024.101550","DOIUrl":"10.1016/j.nahs.2024.101550","url":null,"abstract":"<div><div>The article researches the synchronization issue of delayed multilink complex dynamical networks with Lévy noise (DMCNL) via asynchronously intermittent sampled-data decentralized control (AISDC). Asynchronous intermittent decentralized control, compared to synchronous intermittent control, is a policy that enables individual node-system to operate with distinct work and rest periods, thereby offering a higher degree of adaptability. Considering that continuous sampling in the control segment may result in resource wastage, a novel policy called AISDC is proposed by integrating the policy above and intermittent sampled-data control. Then, an auxiliary timer is designed for every node-system to make a compromise between regulating work intervals and controlling the rest interval. Moreover, graph theory and the Lyapunov method are combined to establish several synchronization criteria. Finally, numerical examples on a second-order Kuramoto model verify the feasibility of the proposed results.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101550"},"PeriodicalIF":3.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yacine Chitour , Hussein Obeid , Salah Laghrouche , Leonid Fridman
{"title":"Barrier function-based adaptive continuous higher-order sliding mode controllers","authors":"Yacine Chitour , Hussein Obeid , Salah Laghrouche , Leonid Fridman","doi":"10.1016/j.nahs.2024.101551","DOIUrl":"10.1016/j.nahs.2024.101551","url":null,"abstract":"<div><div>In this paper, two classes of continuous higher order adaptive sliding mode controllers based on barrier functions are developed for a perturbed chain of integrators with perturbations bounded by unknown functions. Both classes provide finite-time convergence of the state of the system to a predefined domain using a continuous control signal. The first class of adaptive controllers require few assumptions about the perturbation. However, it can provide unbounded control gains in general. To ensure bounded control gains in the case of a Lipschitz perturbation, a second class of adaptive controllers, called the adaptive higher order Super-Twisting (HOST) algorithm, is developed. The effectiveness of the proposed adaptive controllers is specifically assessed for a cart-pendulum system. Simulation results illustrate high performance in achieving stabilization, even in cases where the disturbance upper bound and its derivative are unknown.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101551"},"PeriodicalIF":3.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exponential stability of positive implicit dynamic equations with constant coefficients","authors":"Do Duc Thuan","doi":"10.1016/j.nahs.2024.101549","DOIUrl":"10.1016/j.nahs.2024.101549","url":null,"abstract":"<div><div>In this paper, the problem of positivity and stability for linear time-invariant implicit dynamic equations is generally studied. We provide necessary and sufficient conditions for positivity of these equations. This characterization can be considered as a unification and generalization for some previous results. On the other hand, we study the exponential stability of positive implicit dynamic equations. Previously, this issue was not completely addressed. By using Krein–Rutman theorem, we show that a positive implicit dynamic equation on a time scale is uniformly exponentially stable if and only if the characteristic polynomial of the matrix pair defining the equation has all its coefficients of the same sign.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101549"},"PeriodicalIF":3.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New results on finite-time stability of singular Markovian jump systems with time-varying delay","authors":"Shaohua Long , Mei Huang , Shouming Zhong","doi":"10.1016/j.nahs.2024.101548","DOIUrl":"10.1016/j.nahs.2024.101548","url":null,"abstract":"<div><div>In this paper, we focus on the finite-time stability problem of singular Markovian jump systems with time-varying delay. Firstly, this paper presents some new inequalities which are very important to the finite-time stability problem of the considered systems. Secondly, by employing these new inequalities and the Lyapunov–Krasovskii functional approach, this paper derives some sufficient conditions that guarantee the considered systems to be regular, impulse-free and finite-time stable. Finally, three numerical examples are given to illustrate the effectiveness and advantage of the proposed methods.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101548"},"PeriodicalIF":3.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cluster synchronization of complex dynamic networks under pinning control via a limited capacity communication channel","authors":"Haifeng Wu , Shuai Liu , Licheng Wang","doi":"10.1016/j.nahs.2024.101547","DOIUrl":"10.1016/j.nahs.2024.101547","url":null,"abstract":"<div><div>In this paper, the cluster synchronization pinning control problem is investigated for the continuous-time-directed complex dynamic networks under the bit rate constraint. Firstly, a node selection scheme based on differences in node degrees is proposed to achieve cluster synchronization. Subsequently, a coding–decoding scheme is designed during data transmission through digital communication channels where only a limited number of encoded signal sequences are sent to the controller side. Further, regarding the unreliability of the channel, the phenomenon of packet dropouts is considered during the encoding process, which is modeled by using a series of independent Bernoulli distributed random variables. The pinning controller is then designed based on the received decoding information. By means of the convex optimization method, a sufficient condition is established to ensure that the cluster synchronization error is ultimately bounded and the desired controller gain is determined based on the solution to matrix inequalities. Finally, the effectiveness of the obtained results is validated through a simulation example.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101547"},"PeriodicalIF":3.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Sântejudean , Ş. Ungur , R. Herzal , I.-C. Morărescu , V.S. Varma , L. Buşoniu
{"title":"Globally convergent path-aware optimization with mobile robots","authors":"T. Sântejudean , Ş. Ungur , R. Herzal , I.-C. Morărescu , V.S. Varma , L. Buşoniu","doi":"10.1016/j.nahs.2024.101546","DOIUrl":"10.1016/j.nahs.2024.101546","url":null,"abstract":"<div><p>Consider a mobile robot that must navigate as quickly as possible to the global maxima of a function (e.g. density of seabed litter, pollutant concentration, wireless signal strength) defined over its operating area. This objective function is initially unknown and is assumed to be Lipschitz continuous. The limited velocity of the robot restricts the next samples to neighboring positions, and to avoid wasting time and energy, the robot’s path must be adapted as new information becomes available. The paper proposes two methods that use an upper bound on the objective to iteratively change the position targeted by the robot as new samples are acquired. The first method is FTW, which Turns When the best value seen so far of the objective Function is larger than the bound of the current target position. The second is FTWD, an extension of FTW that takes into account the Distance to the target. Convergence guarantees are provided for both methods, and a convergence rate is proven to characterize how fast the FTW suboptimality decreases as the number of samples grows. In a numerical study, FTWD greatly improves performance compared to FTW, outperforms two representative source-seeking baselines, and obtains results similar to a much more computationally intensive method that does not guarantee convergence. The relationship between FTW and FTWD is also confirmed in real-robot experiments, where a TurtleBot3 seeks the darkest point on a 2D grayscale map.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101546"},"PeriodicalIF":3.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751570X24000839/pdfft?md5=fa25eec126f2b4af5ecf2f2391974551&pid=1-s2.0-S1751570X24000839-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predefined-time convergence strategies for multi-cluster games in hybrid heterogeneous systems","authors":"Fuxi Niu, Xiaohong Nian","doi":"10.1016/j.nahs.2024.101537","DOIUrl":"10.1016/j.nahs.2024.101537","url":null,"abstract":"<div><p>This paper explores the problem of (generalized) Nash equilibrium search in multi-cluster games with heterogeneous dynamics and multiple constraints. Within this research framework, each agent acquires information solely through local interactions with its neighbors and forms clusters based on similarity of interests. These clusters manifest dual relationships of cooperation and competition: agents within the same cluster enhance decision-making capabilities through cooperation, while different clusters compete to maximize their respective benefits. To delve into these complex interactions among clusters and the learning and evolution processes among agents, four distributed control algorithms suitable for various scenario requirements are designed and implemented. These algorithms ensure that each agent converges to a Nash equilibrium (NE) or generalized Nash equilibrium (GNE) of the multi-cluster system within predefined time points. Finally, we apply these algorithms to the connectivity control problem of unmanned aerial vehicle swarms with diverse dynamics, validating the theoretical results through comprehensive simulations.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"55 ","pages":"Article 101537"},"PeriodicalIF":3.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sampled-data feedback control design in the presence of quantized actuators","authors":"Francesco Ferrante , Sophie Tarbouriech","doi":"10.1016/j.nahs.2024.101530","DOIUrl":"10.1016/j.nahs.2024.101530","url":null,"abstract":"<div><p>Sampled-data control linear systems subject to uniform input quantization are considered. Within this context, the design of a stabilizing sampled-data state feedback controller is proposed. The proposed controller guarantees uniform global asymptotic stability of an attractor containing the origin of the plant. Due to the interplay of continuous-time dynamics and instantaneous changes in the state, the closed-loop system is modeled as a hybrid dynamical system. By relying on a quadratic clock-dependent Lyapunov function, sufficient conditions in the form of bilinear matrix inequalities are provided to ensure closed-loop stability. These conditions are employed to devise an optimal controller design algorithm based on the use of convex–concave decomposition approach. This leads to an iterative design algorithm based on the solution to a sequence of semidefinite programs for which feasibility is guaranteed. Some illustrative examples show the effectiveness of the proposed results.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"54 ","pages":"Article 101530"},"PeriodicalIF":3.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synchronization of high-dimensional Kuramoto-oscillator networks with variable-gain impulsive coupling on the unit sphere","authors":"Shanshan Peng , Jianquan Lu , Bangxin Jiang , Jiandong Zhu","doi":"10.1016/j.nahs.2024.101536","DOIUrl":"10.1016/j.nahs.2024.101536","url":null,"abstract":"<div><p>Kuramoto models (KMs) in scalar or high-dimensional form can describe the synchronization phenomenon for large populations of coupled oscillators in networks of dynamical systems such as power grids, satellite mobile sensing networks, etc. However, these models are developed based on continuous-time coupling among oscillators, which is not applicable to networks where the coupling between oscillators occurs only at impulsive instants. Herein, we propose for the first time a generalized high-dimensional Kuramoto oscillator network (HDKON) with variable-gain impulsive coupling on the unit sphere. The proposed HDKON can be reduced to a scalar form comprising a sinusoidal function, thereby generalizing the scalar KM in both temporal and spatial domains. Furthermore, we provide some variation coefficients of the synchronization errors for the oscillator pairs at impulsive instants, and derive a sufficient condition for the exponential synchronization of the HDKON with identical natural frequency. Moreover, we consider an HDKON with a central oscillator and demonstrate that peripheral oscillators almost globally exponentially synchronize to the central oscillator under a sufficient condition. Finally, numerical simulations are performed to verify the main theoretical results.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"54 ","pages":"Article 101536"},"PeriodicalIF":3.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}