Contributions To Discrete Mathematics最新文献

筛选
英文 中文
$Q_4$-Factorization of $lambda K_n$ and $lambda K_x(m)$ $Q_4$-$lambda K_n$和$lamba K_x(m)的因子分解$
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2020-07-30 DOI: 10.11575/CDM.V15I2.62352
Oguz Dogan
{"title":"$Q_4$-Factorization of $lambda K_n$ and $lambda K_x(m)$","authors":"Oguz Dogan","doi":"10.11575/CDM.V15I2.62352","DOIUrl":"https://doi.org/10.11575/CDM.V15I2.62352","url":null,"abstract":"In this study, we show that necessary conditions for $Q_4$-factorization of $lambda{K_n}$ and $lambda{K_{x(m)}}$ (complete $x$ partite graph with parts of size $m$) are sufficient. We proved that there exists a $Q_4$-factorization of $lambda{K_{x(m)}}$ if and only if $mxequiv{0} pmod{16}$ and $lambda{m(x-1)}equiv{0}pmod{4}$. This result immediately gives that $lambda K_n$ has a $Q_4$-factorization if and only if $nequiv 0 pmod{16}$ and $lambda equiv 0 pmod{4}$.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45695220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitioning the $5times 5$ array into restrictions of circles 将$5乘以5$数组划分为圆的限制
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2020-05-11 DOI: 10.11575/CDM.V15I1.62808
R. Dawson
{"title":"Partitioning the $5times 5$ array into restrictions of circles","authors":"R. Dawson","doi":"10.11575/CDM.V15I1.62808","DOIUrl":"https://doi.org/10.11575/CDM.V15I1.62808","url":null,"abstract":"We show that there is a unique way to partition a $5times 5$ array of lattice points into restrictions of five circles. This result is extended to the $6times 5$ array, and used to show the optimality of a six-circle solution for the $6times 6$ array.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41945735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designs for graphs with six vertices and ten edges - II 有六个顶点和十条边的图形的设计 - II
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2020-04-19 DOI: 10.55016/ojs/cdm.v17i2.70232
A. D. Forbes, T. Griggs
{"title":"Designs for graphs with six vertices and ten edges - II","authors":"A. D. Forbes, T. Griggs","doi":"10.55016/ojs/cdm.v17i2.70232","DOIUrl":"https://doi.org/10.55016/ojs/cdm.v17i2.70232","url":null,"abstract":"The design spectrum has been determined for ten of the 15 graphs with six vertices and ten edges. In this paper, we solve the design spectrum problem for the remaining five graphs with three possible exceptions.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2020-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141211310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sun toughness and $P_{geq3}$-factors in graphs 太阳韧性和$P_{geq3}$ -图表中的因素
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2019-12-26 DOI: 10.11575/CDM.V14I1.62676
Sizhong Zhou
{"title":"Sun toughness and $P_{geq3}$-factors in graphs","authors":"Sizhong Zhou","doi":"10.11575/CDM.V14I1.62676","DOIUrl":"https://doi.org/10.11575/CDM.V14I1.62676","url":null,"abstract":"A $P_{geq n}$-factor means a path factor with each component having at least $n$ vertices,where $ngeq2$ is an integer. A graph $G$ is called a $P_{geq n}$-factor deleted graph if $G-e$admits a $P_{geq n}$-factor for any $ein E(G)$. A graph $G$ is called a $P_{geq n}$-factorcovered graph if $G$ admits a $P_{geq n}$-factor containing $e$ for each $ein E(G)$. In thispaper, we first introduce a new parameter, i.e., sun toughness, which is denoted by $s(G)$. $s(G)$is defined as follows:$$s(G)=min{frac{|X|}{sun(G-X)}: Xsubseteq V(G), sun(G-X)geq2}$$if $G$ is not a complete graph, and $s(G)=+infty$ if $G$ is a complete graph, where $sun(G-X)$denotes the number of sun components of $G-X$. Then we obtain two sun toughness conditions for agraph to be a $P_{geq n}$-factor deleted graph or a $P_{geq n}$-factor covered graph. Furthermore,it is shown that our results are sharp.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46620847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit upper bounds for$f(n)=prod_{p_{omega(n)}} frac{p}{p-1}$ 显式上界$f(n)=prod_{p_{omega(n)}} frac{p}{p-1}$
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2007-11-02 DOI: 10.11575/CDM.V2I2.61941
Amir Akbary, Zachary Friggstad, Robert Juricevic
{"title":"Explicit upper bounds for$f(n)=prod_{p_{omega(n)}} frac{p}{p-1}$","authors":"Amir Akbary, Zachary Friggstad, Robert Juricevic","doi":"10.11575/CDM.V2I2.61941","DOIUrl":"https://doi.org/10.11575/CDM.V2I2.61941","url":null,"abstract":"","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64321493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信