Contributions To Discrete Mathematics最新文献

筛选
英文 中文
$Q_4$-Factorization of $lambda K_n$ and $lambda K_x(m)$ $Q_4$-$lambda K_n$和$lamba K_x(m)的因子分解$
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2020-07-30 DOI: 10.11575/CDM.V15I2.62352
Oguz Dogan
{"title":"$Q_4$-Factorization of $lambda K_n$ and $lambda K_x(m)$","authors":"Oguz Dogan","doi":"10.11575/CDM.V15I2.62352","DOIUrl":"https://doi.org/10.11575/CDM.V15I2.62352","url":null,"abstract":"In this study, we show that necessary conditions for $Q_4$-factorization of $lambda{K_n}$ and $lambda{K_{x(m)}}$ (complete $x$ partite graph with parts of size $m$) are sufficient. We proved that there exists a $Q_4$-factorization of $lambda{K_{x(m)}}$ if and only if $mxequiv{0} pmod{16}$ and $lambda{m(x-1)}equiv{0}pmod{4}$. This result immediately gives that $lambda K_n$ has a $Q_4$-factorization if and only if $nequiv 0 pmod{16}$ and $lambda equiv 0 pmod{4}$.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":"15 1","pages":"18-26"},"PeriodicalIF":0.5,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45695220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitioning the $5times 5$ array into restrictions of circles 将$5乘以5$数组划分为圆的限制
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2020-05-11 DOI: 10.11575/CDM.V15I1.62808
R. Dawson
{"title":"Partitioning the $5times 5$ array into restrictions of circles","authors":"R. Dawson","doi":"10.11575/CDM.V15I1.62808","DOIUrl":"https://doi.org/10.11575/CDM.V15I1.62808","url":null,"abstract":"We show that there is a unique way to partition a $5times 5$ array of lattice points into restrictions of five circles. This result is extended to the $6times 5$ array, and used to show the optimality of a six-circle solution for the $6times 6$ array.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":"15 1","pages":"12-21"},"PeriodicalIF":0.5,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41945735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sun toughness and $P_{geq3}$-factors in graphs 太阳韧性和$P_{geq3}$ -图表中的因素
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2019-12-26 DOI: 10.11575/CDM.V14I1.62676
Sizhong Zhou
{"title":"Sun toughness and $P_{geq3}$-factors in graphs","authors":"Sizhong Zhou","doi":"10.11575/CDM.V14I1.62676","DOIUrl":"https://doi.org/10.11575/CDM.V14I1.62676","url":null,"abstract":"A $P_{geq n}$-factor means a path factor with each component having at least $n$ vertices,where $ngeq2$ is an integer. A graph $G$ is called a $P_{geq n}$-factor deleted graph if $G-e$admits a $P_{geq n}$-factor for any $ein E(G)$. A graph $G$ is called a $P_{geq n}$-factorcovered graph if $G$ admits a $P_{geq n}$-factor containing $e$ for each $ein E(G)$. In thispaper, we first introduce a new parameter, i.e., sun toughness, which is denoted by $s(G)$. $s(G)$is defined as follows:$$s(G)=min{frac{|X|}{sun(G-X)}: Xsubseteq V(G), sun(G-X)geq2}$$if $G$ is not a complete graph, and $s(G)=+infty$ if $G$ is a complete graph, where $sun(G-X)$denotes the number of sun components of $G-X$. Then we obtain two sun toughness conditions for agraph to be a $P_{geq n}$-factor deleted graph or a $P_{geq n}$-factor covered graph. Furthermore,it is shown that our results are sharp.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":"14 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2019-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46620847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit upper bounds for$f(n)=prod_{p_{omega(n)}} frac{p}{p-1}$ 显式上界$f(n)=prod_{p_{omega(n)}} frac{p}{p-1}$
IF 0.5 4区 数学
Contributions To Discrete Mathematics Pub Date : 2007-11-02 DOI: 10.11575/CDM.V2I2.61941
Amir Akbary, Zachary Friggstad, Robert Juricevic
{"title":"Explicit upper bounds for$f(n)=prod_{p_{omega(n)}} frac{p}{p-1}$","authors":"Amir Akbary, Zachary Friggstad, Robert Juricevic","doi":"10.11575/CDM.V2I2.61941","DOIUrl":"https://doi.org/10.11575/CDM.V2I2.61941","url":null,"abstract":"","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":"2 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64321493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信