太阳韧性和$P_{\geq3}$ -图表中的因素

IF 0.4 4区 数学 Q4 MATHEMATICS
Sizhong Zhou
{"title":"太阳韧性和$P_{\\geq3}$ -图表中的因素","authors":"Sizhong Zhou","doi":"10.11575/CDM.V14I1.62676","DOIUrl":null,"url":null,"abstract":"A $P_{\\geq n}$-factor means a path factor with each component having at least $n$ vertices,where $n\\geq2$ is an integer. A graph $G$ is called a $P_{\\geq n}$-factor deleted graph if $G-e$admits a $P_{\\geq n}$-factor for any $e\\in E(G)$. A graph $G$ is called a $P_{\\geq n}$-factorcovered graph if $G$ admits a $P_{\\geq n}$-factor containing $e$ for each $e\\in E(G)$. In thispaper, we first introduce a new parameter, i.e., sun toughness, which is denoted by $s(G)$. $s(G)$is defined as follows:$$s(G)=\\min\\{\\frac{|X|}{sun(G-X)}: X\\subseteq V(G), \\ sun(G-X)\\geq2\\}$$if $G$ is not a complete graph, and $s(G)=+\\infty$ if $G$ is a complete graph, where $sun(G-X)$denotes the number of sun components of $G-X$. Then we obtain two sun toughness conditions for agraph to be a $P_{\\geq n}$-factor deleted graph or a $P_{\\geq n}$-factor covered graph. Furthermore,it is shown that our results are sharp.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sun toughness and $P_{\\\\geq3}$-factors in graphs\",\"authors\":\"Sizhong Zhou\",\"doi\":\"10.11575/CDM.V14I1.62676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A $P_{\\\\geq n}$-factor means a path factor with each component having at least $n$ vertices,where $n\\\\geq2$ is an integer. A graph $G$ is called a $P_{\\\\geq n}$-factor deleted graph if $G-e$admits a $P_{\\\\geq n}$-factor for any $e\\\\in E(G)$. A graph $G$ is called a $P_{\\\\geq n}$-factorcovered graph if $G$ admits a $P_{\\\\geq n}$-factor containing $e$ for each $e\\\\in E(G)$. In thispaper, we first introduce a new parameter, i.e., sun toughness, which is denoted by $s(G)$. $s(G)$is defined as follows:$$s(G)=\\\\min\\\\{\\\\frac{|X|}{sun(G-X)}: X\\\\subseteq V(G), \\\\ sun(G-X)\\\\geq2\\\\}$$if $G$ is not a complete graph, and $s(G)=+\\\\infty$ if $G$ is a complete graph, where $sun(G-X)$denotes the number of sun components of $G-X$. Then we obtain two sun toughness conditions for agraph to be a $P_{\\\\geq n}$-factor deleted graph or a $P_{\\\\geq n}$-factor covered graph. Furthermore,it is shown that our results are sharp.\",\"PeriodicalId\":48938,\"journal\":{\"name\":\"Contributions To Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions To Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11575/CDM.V14I1.62676\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11575/CDM.V14I1.62676","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

$P_{\geq n}$ -因子表示每个组件至少有$n$个顶点的路径因子,其中$n\geq2$是一个整数。如果$G-e$允许任何$e\in E(G)$存在$P_{\geq n}$因子,则图$G$称为$P_{\geq n}$因子删除图。如果对于每个$e\in E(G)$, $G$允许一个包含$e$的$P_{\geq n}$因子,则图$G$称为包含$P_{\geq n}$因子的图。在本文中,我们首先引入一个新的参数,即太阳韧性,用$s(G)$表示。$s(G)$定义如下:如果$G$不是完全图,则为$$s(G)=\min\{\frac{|X|}{sun(G-X)}: X\subseteq V(G), \ sun(G-X)\geq2\}$$;如果$G$是完全图,则为$s(G)=+\infty$,其中$sun(G-X)$表示$G-X$的太阳分量数。得到了图形为$P_{\geq n}$因子删除图形或$P_{\geq n}$因子覆盖图形的两个太阳韧性条件。此外,结果表明,我们的结果是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sun toughness and $P_{\geq3}$-factors in graphs
A $P_{\geq n}$-factor means a path factor with each component having at least $n$ vertices,where $n\geq2$ is an integer. A graph $G$ is called a $P_{\geq n}$-factor deleted graph if $G-e$admits a $P_{\geq n}$-factor for any $e\in E(G)$. A graph $G$ is called a $P_{\geq n}$-factorcovered graph if $G$ admits a $P_{\geq n}$-factor containing $e$ for each $e\in E(G)$. In thispaper, we first introduce a new parameter, i.e., sun toughness, which is denoted by $s(G)$. $s(G)$is defined as follows:$$s(G)=\min\{\frac{|X|}{sun(G-X)}: X\subseteq V(G), \ sun(G-X)\geq2\}$$if $G$ is not a complete graph, and $s(G)=+\infty$ if $G$ is a complete graph, where $sun(G-X)$denotes the number of sun components of $G-X$. Then we obtain two sun toughness conditions for agraph to be a $P_{\geq n}$-factor deleted graph or a $P_{\geq n}$-factor covered graph. Furthermore,it is shown that our results are sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信