{"title":"$Q_4$-$\\lambda K_n$和$\\lamba K_x(m)的因子分解$","authors":"Oguz Dogan","doi":"10.11575/CDM.V15I2.62352","DOIUrl":null,"url":null,"abstract":"In this study, we show that necessary conditions for $Q_4$-factorization of $\\lambda{K_n}$ and $\\lambda{K_{x(m)}}$ (complete $x$ partite graph with parts of size $m$) are sufficient. We proved that there exists a $Q_4$-factorization of $\\lambda{K_{x(m)}}$ if and only if $mx\\equiv{0} \\pmod{16}$ and $\\lambda{m(x-1)}\\equiv{0}\\pmod{4}$. This result immediately gives that $\\lambda K_n$ has a $Q_4$-factorization if and only if $n\\equiv 0 \\pmod{16}$ and $\\lambda \\equiv 0 \\pmod{4}$.","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$Q_4$-Factorization of $\\\\lambda K_n$ and $\\\\lambda K_x(m)$\",\"authors\":\"Oguz Dogan\",\"doi\":\"10.11575/CDM.V15I2.62352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we show that necessary conditions for $Q_4$-factorization of $\\\\lambda{K_n}$ and $\\\\lambda{K_{x(m)}}$ (complete $x$ partite graph with parts of size $m$) are sufficient. We proved that there exists a $Q_4$-factorization of $\\\\lambda{K_{x(m)}}$ if and only if $mx\\\\equiv{0} \\\\pmod{16}$ and $\\\\lambda{m(x-1)}\\\\equiv{0}\\\\pmod{4}$. This result immediately gives that $\\\\lambda K_n$ has a $Q_4$-factorization if and only if $n\\\\equiv 0 \\\\pmod{16}$ and $\\\\lambda \\\\equiv 0 \\\\pmod{4}$.\",\"PeriodicalId\":48938,\"journal\":{\"name\":\"Contributions To Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions To Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11575/CDM.V15I2.62352\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11575/CDM.V15I2.62352","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
$Q_4$-Factorization of $\lambda K_n$ and $\lambda K_x(m)$
In this study, we show that necessary conditions for $Q_4$-factorization of $\lambda{K_n}$ and $\lambda{K_{x(m)}}$ (complete $x$ partite graph with parts of size $m$) are sufficient. We proved that there exists a $Q_4$-factorization of $\lambda{K_{x(m)}}$ if and only if $mx\equiv{0} \pmod{16}$ and $\lambda{m(x-1)}\equiv{0}\pmod{4}$. This result immediately gives that $\lambda K_n$ has a $Q_4$-factorization if and only if $n\equiv 0 \pmod{16}$ and $\lambda \equiv 0 \pmod{4}$.
期刊介绍:
Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.