Annals of Functional Analysis最新文献

筛选
英文 中文
Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive (scriptstyle N)-tuples of operators in Q and Q* ideals of compact operators 由Q和Q*理想中紧凑算子的增量$scriptstyle N$$算子元组生成的拉普拉斯变换器迭代扰动的规范不等式
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-13 DOI: 10.1007/s43034-024-00364-7
Danko R. Jocić, Zora Lj. Golubović, Mihailo Krstić, Stevan Milašinović
{"title":"Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive (scriptstyle N)-tuples of operators in Q and Q* ideals of compact operators","authors":"Danko R. Jocić,&nbsp;Zora Lj. Golubović,&nbsp;Mihailo Krstić,&nbsp;Stevan Milašinović","doi":"10.1007/s43034-024-00364-7","DOIUrl":"10.1007/s43034-024-00364-7","url":null,"abstract":"<div><p>Let <span>(Phi ,Psi )</span> be symmetrically norming (s.n.) functions, <img> and <span>({{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle A;!,B}X;!{mathop {=}limits ^{tiny {text {def}}}};!{{{{mathscr {L}}}}};![mu ;!]({Delta _{scriptscriptstyle A;!,B}})X;!{mathop {=}limits ^{tiny {text {def}}}};!int _{{{mathbb {R}}}_+}!e^{!-tA}Xe^{!-tB};!dmu (t))</span> denotes the Laplace transformer generated by the generalized derivation <img> where <span>(mu )</span> is a Borel probability measure on <img> If both pairs <img> consist of mutually commuting accretive operators, such that both <span>(C;!-A)</span> and <span>(D-B)</span> are accretive and <img> for some <img>, then <span>({{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle A^{;!*}!!,A}^{};!(I)-{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle C^*!!,C}^{};!(I);!geqslant ;!0,{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle B;!,B^*}^{};!(I)-{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle D;!,D^*}^{};!(I);!geqslant ;!0)</span> and </p><div><div><span>$$begin{aligned}&amp;;!bigl vert {bigl vert {!sqrt{C^*!;!+!C!-A^*!;!-!A}bigl ({{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle A;!,B}X-{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle C;!,D}X}bigr )!sqrt{D!+!;!D^*!-!B-!B^*};!}bigr vert }bigr vert _Psi &amp;leqslant ;!Bigl vert Bigl vert {textstyle sqrt{{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle A^{;!*}!!,A}^{};!(I)-{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle C^*!!,C}^{};!(I)};!({AX!+!XB-CX!-!XD})}Bigr .Bigr .&amp;times Bigl .Bigl .{!sqrt{{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle B;!,B^*}^{};!(I)-{{{{mathscr {L}}}}};![mu ;!]Delta _{scriptscriptstyle D;!,D^*}^{};!(I)}}Bigr vert Bigr vert _Psi , end{aligned}$$</span></div></div><p>holds under any of the following conditions: (a) if <img> (b) if <img> for some <span>(pgeqslant 2,{ L^{;!2};!(;!{{{mathbb {R}}}_+};!,mu )})</span> is separable and at least one of pairs (<i>A</i>, <i>C</i>) or (<i>B</i>, <i>D</i>) consists of normal operators, (c) if both pairs (<i>A</i>, <i>C</i>) and (<i>B</i>, <i>D</i>) consist of normal operators. Above, <span>({Phi ^{^(;!!^{p};!!^)}}!)</span> denotes (the degree) <i>p</i>-modified s.n. function <span>(Phi )</span> and <span>({Phi ^{{^(;!!^{p};!!^)}^{_*}}}!!)</span> is the dual s.n. function for <span>({Phi ^{^(;!!^{p};!!^)}}!.)</span> Moreover, the aforementioned inequality is generalized to the iterated perturbations of Laplace transformers, and the alternative inequalities are given for Q norms as well. These inequalities also generalize some previously obtained results.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141345490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crossed product C(^*)-algebras associated with p-adic multiplication 与 p-adic 乘法相关的交叉积 C$$^*$$ 算法
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-13 DOI: 10.1007/s43034-024-00372-7
Shelley Hebert, Slawomir Klimek, Matt McBride, J. Wilson Peoples
{"title":"Crossed product C(^*)-algebras associated with p-adic multiplication","authors":"Shelley Hebert,&nbsp;Slawomir Klimek,&nbsp;Matt McBride,&nbsp;J. Wilson Peoples","doi":"10.1007/s43034-024-00372-7","DOIUrl":"10.1007/s43034-024-00372-7","url":null,"abstract":"<div><p>We introduce and investigate some examples of C<span>(^*)</span>-algebras which are related to multiplication maps in the ring of <i>p</i>-adic integers. We find ideals within these algebras and use the corresponding short exact sequences to compute the <i>K</i>-theory.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141349677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices 论上三角哈密顿算子矩阵的交映自相接性和残余谱空性
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-12 DOI: 10.1007/s43034-024-00367-4
Jie Liu, Guohai Jin, Buhe Eerdun
{"title":"On the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices","authors":"Jie Liu,&nbsp;Guohai Jin,&nbsp;Buhe Eerdun","doi":"10.1007/s43034-024-00367-4","DOIUrl":"10.1007/s43034-024-00367-4","url":null,"abstract":"<div><p>This paper deals with the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices <span>(H=left( {begin{matrix}A&amp;{}B 0&amp;{}-A^*end{matrix}}right) )</span>. First, for symplectic self-adjoint Hamiltonian operator <i>H</i>, based on detailed classification of point spectrum <span>(sigma _p(H))</span> and residual spectrum <span>(sigma _r(H))</span>, the symmetry about imaginary axis is given between <span>(sigma _p(H))</span>, <span>(sigma _r(H))</span>, deficiency spectrum <span>(sigma _{delta }(H))</span>, compression spectrum <span>(sigma _mathrm{{com}}(H))</span> and approximate point spectrum <span>(sigma _mathrm{{app}}(H))</span>. Second, by means of the spectral symmetry, the sufficient and necessary conditions are given for <span>(sigma _r(H)=varnothing )</span>, <span>(sigma _{r_1}(H)=varnothing )</span> and <span>(sigma _{r_2}(H)=varnothing )</span>, respectively. Then, for <span>(H=left( {begin{matrix}A&amp;{}B 0&amp;{}-A^*end{matrix}}right) )</span>, it is proved that <i>H</i> is symplectic self-adjoint, if <i>H</i> is defined with diagonal domain <span>({mathcal {D}}(H)={mathcal {D}}(A)oplus {mathcal {D}}(A^*))</span>. Finally, for <span>(H=left( {begin{matrix}A&amp;{}B 0&amp;{}-A^*end{matrix}}right) )</span> defined with diagonal domain, using the space decomposition, the sufficient and necessary conditions for <span>(sigma _r(H)=varnothing )</span> and <span>(sigma _{r_1}(H)=varnothing )</span> are described in detail, respectively, by line operator, null space, and range of inner elements.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-024-00367-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141351225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbation formulae for the generalized core–EP inverse 广义核心-EP 逆的扰动公式
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-10 DOI: 10.1007/s43034-024-00371-8
Dijana Mosić
{"title":"Perturbation formulae for the generalized core–EP inverse","authors":"Dijana Mosić","doi":"10.1007/s43034-024-00371-8","DOIUrl":"10.1007/s43034-024-00371-8","url":null,"abstract":"<div><p>The aim of this paper is to present perturbation formulae and perturbation bounds for the GCEP inverse, gMP inverse and their duals. We also study equivalent conditions for absorption laws of the GCEP inverse, the gMP inverse and their duals and use these results to get perturbation bounds. Applying the GCEP and *GCEP inverses, we introduce two new binary relations and show that they are partial orders on corresponding set.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141362201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On m-complex-self-adjoint operators 关于 m 复数自相加算子
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-10 DOI: 10.1007/s43034-024-00349-6
Muneo Chō, Ji Eun Lee
{"title":"On m-complex-self-adjoint operators","authors":"Muneo Chō,&nbsp;Ji Eun Lee","doi":"10.1007/s43034-024-00349-6","DOIUrl":"10.1007/s43034-024-00349-6","url":null,"abstract":"<div><p>A linear operator <i>T</i> belonging to the space <span>(mathcal {L}(mathcal {H}))</span> is called as “complex-self-adjoint\" if there exists an antiunitary operator <i>C</i> such that <span>(T^{*} = CTC^{-1})</span>. This paper investigates the spectral characteristics of complex-self-adjoint operators. Additionally, we introduce the notion of <i>m</i>-complex-self-adjoint operators, representing a generalization of complex-self-adjoint operators. Finally, various properties of <i>m</i>-complex-self-adjoint operators are examined.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141362164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous multiplicative spectral functionals on Hermitian Banach algebras 赫米蒂巴纳赫代数上的连续乘法谱函数
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-08 DOI: 10.1007/s43034-024-00369-2
M. Mabrouk, K. Alahmari, R. Brits
{"title":"Continuous multiplicative spectral functionals on Hermitian Banach algebras","authors":"M. Mabrouk,&nbsp;K. Alahmari,&nbsp;R. Brits","doi":"10.1007/s43034-024-00369-2","DOIUrl":"10.1007/s43034-024-00369-2","url":null,"abstract":"<div><p>Let <span>(mathfrak {A})</span> be a unital Hermitian Banach algebra with the spectrum of <span>(ain mathfrak {A})</span> denoted by <span>(sigma _mathfrak {A}(a))</span>. We show that if a continuous and multiplicative function <span>(phi : mathfrak {A}rightarrow mathbb {C})</span> satisfies <span>(phi (a)in sigma (a))</span> for all <span>(ain mathfrak {A})</span>, then <span>(phi )</span> is linear and hence a character of <span>(mathfrak {A})</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141368370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of positive solutions to the biharmonic equations in (mathbb {R}^{N}) $$mathbb {R}^{N}$ 中双谐方程正解的存在性
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-03 DOI: 10.1007/s43034-024-00362-9
Wenbo Wang, Jixiang Ma, Jianwen Zhou
{"title":"Existence of positive solutions to the biharmonic equations in (mathbb {R}^{N})","authors":"Wenbo Wang,&nbsp;Jixiang Ma,&nbsp;Jianwen Zhou","doi":"10.1007/s43034-024-00362-9","DOIUrl":"10.1007/s43034-024-00362-9","url":null,"abstract":"<div><p>This article considers the biharmonic equation </p><div><div><span>$$begin{aligned} Delta ^{2}u=K(x)f(u)quad text {in }~mathbb { R}^{N}. end{aligned}$$</span></div></div><p>Under suitable assumptions, the existence of positive solutions is obtained. The methods used here contain the integral operator and the Schauder fixed point theory. Since the form of fundamental solution of <span>(Delta ^{2}u=0)</span> in <span>(mathbb {R}^{N})</span> depends on <i>N</i>, we divide our discussions into three cases as (a) <span>(N=2)</span>; (b) <span>(N=4)</span>; (c) <span>(N&gt;2)</span> but <span>(Nne 4)</span>. The fundamental solution of <span>(Delta ^{2})</span> plays an essential role in our results.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new uniform structure for Hilbert (C^*)-modules 希尔伯特 $$C^*$$ 模块的新统一结构
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-03 DOI: 10.1007/s43034-024-00368-3
Denis Fufaev, Evgenij Troitsky
{"title":"A new uniform structure for Hilbert (C^*)-modules","authors":"Denis Fufaev,&nbsp;Evgenij Troitsky","doi":"10.1007/s43034-024-00368-3","DOIUrl":"10.1007/s43034-024-00368-3","url":null,"abstract":"<div><p>We introduce and study some new uniform structures for Hilbert <span>(C^*)</span>-modules over a <span>(C^*)</span>-algebra <span>(mathcal {A}.)</span> In particular, we prove that in some cases they have the same totally bounded sets. To define one of them, we introduce a new class of <span>(mathcal {A})</span>-functionals: locally adjointable functionals, which have interesting properties in this context and seem to be of independent interest. A relation between these uniform structures and the theory of <span>(mathcal {A})</span>-compact operators is established.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Livšic function of a homogeneous symmetric operator and the multiplication theorem 同质对称算子的李夫希奇函数和乘法定理
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-06-03 DOI: 10.1007/s43034-024-00370-9
K. A. Makarov, E. Tsekanovskii
{"title":"The Livšic function of a homogeneous symmetric operator and the multiplication theorem","authors":"K. A. Makarov,&nbsp;E. Tsekanovskii","doi":"10.1007/s43034-024-00370-9","DOIUrl":"10.1007/s43034-024-00370-9","url":null,"abstract":"<div><p>This paper presents a solution to the Jørgensen–Muhly problem for a homogeneous symmetric operator with deficiency indices (1, 1) that <b>does not admit</b> a homogeneous self-adjoint extension. Based on the Livšic function approach, we characterize the set of all the solutions of the Jørgensen–Muhly problem up to unitary equivalence and describe the complete set of the corresponding unitary invariants.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II 隶属于半有限 von Neumann 代数的可测算子的理想空间。二
IF 1.2 3区 数学
Annals of Functional Analysis Pub Date : 2024-05-23 DOI: 10.1007/s43034-024-00361-w
A. M. Bikchentaev, M. F. Darwish, M. A. Muratov
{"title":"Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II","authors":"A. M. Bikchentaev,&nbsp;M. F. Darwish,&nbsp;M. A. Muratov","doi":"10.1007/s43034-024-00361-w","DOIUrl":"10.1007/s43034-024-00361-w","url":null,"abstract":"<div><p>Let <span>(tau )</span> be a faithful semifinite normal trace on a von Neumann algebra <span>(mathcal {M})</span>, let <span>(S(mathcal {M}, tau ))</span> be the <span>({}^*)</span>-algebra of all <span>(tau )</span>-measurable operators. Let <span>(mu (t; X))</span> be the generalized singular value function of the operator <span>(X in S(mathcal {M}, tau ))</span>. If <span>(mathcal {E})</span> is a normed ideal space (NIS) on <span>((mathcal {M}, tau ))</span>, then </p><div><div><span>$$begin{aligned} Vert AVert _mathcal {E}le Vert A+textrm{i} BVert _mathcal {E} end{aligned}$$</span></div><div>\u0000 (*)\u0000 </div></div><p>for all self-adjoint operators <span>(A, B in mathcal {E})</span>. In particular, if <span>(A, B in (L_1+L_{infty })(mathcal {M}, tau ))</span> are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization, <span>(A preceq _w A+textrm{i}B)</span>. Inequality <span>((*))</span> cannot be extended to the Shatten–von Neumann ideals <span>(mathfrak {S}_p)</span>, <span>( 0&lt; p &lt;1)</span>. Hence, the well-known inequality <span>( mu (t; A) le mu (t; A+textrm{i} B))</span> for all <span>(t&gt;0)</span>, positive <span>(A in S(mathcal {M}, tau ))</span> and self-adjoint <span>( B in S(mathcal {M}, tau ))</span> cannot be extended to all self-adjoint operators <span>(A, B in S(mathcal {M}, tau ))</span>. Consider self-adjoint operators <span>(X, Yin S(mathcal {M}, tau ))</span>, let <i>K</i>(<i>X</i>) be the Cayley transform of <i>X</i>. Then, <span>(mu (t; K(X)-K(Y))le 2 mu (t; X-Y))</span> for all <span>(t&gt;0)</span>. If <span>(mathcal {E})</span> is an <i>F</i>-NIS on <span>((mathcal {M}, tau ))</span> and <span>(X-Yin mathcal {E})</span>, then <span>(K(X)-K(Y)in mathcal {E})</span> and <span>(Vert K(X)-K(Y)Vert _mathcal {E}le 2 Vert X-YVert _mathcal {E})</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信