L. C. Paes-Leme, E. M. Martins, M. R. Marcial, W. M. Ferreira
{"title":"一类具有临界指数的p- kirchhoff型方程的无穷多解","authors":"L. C. Paes-Leme, E. M. Martins, M. R. Marcial, W. M. Ferreira","doi":"10.1007/s43034-025-00439-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a class of <i>p</i>-Kirchhoff-type problem with critical exponent. Using Krasnoselskii’s genus theory and the concentration-compactness principle, due to Lions, we demonstrate the existence of infinitely many solutions. </p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many solutions for a class of p-Kirchhoff-type equations with critical exponent\",\"authors\":\"L. C. Paes-Leme, E. M. Martins, M. R. Marcial, W. M. Ferreira\",\"doi\":\"10.1007/s43034-025-00439-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a class of <i>p</i>-Kirchhoff-type problem with critical exponent. Using Krasnoselskii’s genus theory and the concentration-compactness principle, due to Lions, we demonstrate the existence of infinitely many solutions. </p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-025-00439-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00439-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Infinitely many solutions for a class of p-Kirchhoff-type equations with critical exponent
In this paper, we consider a class of p-Kirchhoff-type problem with critical exponent. Using Krasnoselskii’s genus theory and the concentration-compactness principle, due to Lions, we demonstrate the existence of infinitely many solutions.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.