\(L^p\)- \(L^q\)光滑流形上连续线性算子的有界性

IF 1 3区 数学 Q1 MATHEMATICS
Duván Cardona Sánchez, Vishvesh Kumar, Michael Ruzhansky, Niyaz Tokmagambetov
{"title":"\\(L^p\\)- \\(L^q\\)光滑流形上连续线性算子的有界性","authors":"Duván Cardona Sánchez,&nbsp;Vishvesh Kumar,&nbsp;Michael Ruzhansky,&nbsp;Niyaz Tokmagambetov","doi":"10.1007/s43034-025-00437-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the boundedness of global continuous linear operators on smooth manifolds. Using the notion of a global symbol, we extend a classical condition of Hörmander type to guarantee the <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span>-boundedness of global operators. Our approach links the mapping properties of continuous linear operators on smooth manifolds with the <span>\\(L^p\\)</span>-estimates of eigenfunctions of operators including a variety of examples, harmonic oscillators, anharmonic oscillators, etc. First, we investigate <span>\\(L^p\\)</span>-boundedness of pseudo-multipliers in the setting of Hörmander–Mihlin type conditions. We also prove <span>\\(L^\\infty\\)</span>-<i>BMO</i> estimates for pseudo-multipliers. Later, we concentrate our investigation to settle <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> boundedness of the Fourier multipliers and pseudo-multipliers operators for the range <span>\\(1&lt;p \\le 2 \\le q&lt;\\infty .\\)</span> On the way to achieve our goal of <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> boundedness, we prove two classical inequalities, namely, Paley inequality and Hausdorff–Young–Paley inequality for smooth manifolds. Finally, we present some examples about the well-posedness of abstract non-linear equations.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-025-00437-1.pdf","citationCount":"0","resultStr":"{\"title\":\"\\\\(L^p\\\\)-\\\\(L^q\\\\) boundedness of continuous linear operators on smooth manifolds\",\"authors\":\"Duván Cardona Sánchez,&nbsp;Vishvesh Kumar,&nbsp;Michael Ruzhansky,&nbsp;Niyaz Tokmagambetov\",\"doi\":\"10.1007/s43034-025-00437-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the boundedness of global continuous linear operators on smooth manifolds. Using the notion of a global symbol, we extend a classical condition of Hörmander type to guarantee the <span>\\\\(L^p\\\\)</span>-<span>\\\\(L^q\\\\)</span>-boundedness of global operators. Our approach links the mapping properties of continuous linear operators on smooth manifolds with the <span>\\\\(L^p\\\\)</span>-estimates of eigenfunctions of operators including a variety of examples, harmonic oscillators, anharmonic oscillators, etc. First, we investigate <span>\\\\(L^p\\\\)</span>-boundedness of pseudo-multipliers in the setting of Hörmander–Mihlin type conditions. We also prove <span>\\\\(L^\\\\infty\\\\)</span>-<i>BMO</i> estimates for pseudo-multipliers. Later, we concentrate our investigation to settle <span>\\\\(L^p\\\\)</span>-<span>\\\\(L^q\\\\)</span> boundedness of the Fourier multipliers and pseudo-multipliers operators for the range <span>\\\\(1&lt;p \\\\le 2 \\\\le q&lt;\\\\infty .\\\\)</span> On the way to achieve our goal of <span>\\\\(L^p\\\\)</span>-<span>\\\\(L^q\\\\)</span> boundedness, we prove two classical inequalities, namely, Paley inequality and Hausdorff–Young–Paley inequality for smooth manifolds. Finally, we present some examples about the well-posedness of abstract non-linear equations.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-025-00437-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-025-00437-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00437-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究光滑流形上全局连续线性算子的有界性。利用全局符号的概念,我们扩展了一个经典的Hörmander类型条件,以保证全局操作符的\(L^p\) - \(L^q\)有界性。我们的方法将光滑流形上连续线性算子的映射性质与算子的特征函数的\(L^p\) -估计联系起来,包括各种例子,调和振子,非调和振子等。首先,我们研究了伪乘子在Hörmander-Mihlin型条件下的\(L^p\)有界性。我们还证明了伪乘子的\(L^\infty\) -BMO估计。随后,我们集中研究了范围\(1<p \le 2 \le q<\infty .\)的傅里叶乘子算子和伪乘子算子的\(L^p\) - \(L^q\)有界性。在实现\(L^p\) - \(L^q\)有界性目标的过程中,我们证明了两个经典不等式,即光滑流形的Paley不等式和Hausdorff-Young-Paley不等式。最后,我们给出了一些关于抽象非线性方程适定性的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\(L^p\)-\(L^q\) boundedness of continuous linear operators on smooth manifolds

In this paper, we study the boundedness of global continuous linear operators on smooth manifolds. Using the notion of a global symbol, we extend a classical condition of Hörmander type to guarantee the \(L^p\)-\(L^q\)-boundedness of global operators. Our approach links the mapping properties of continuous linear operators on smooth manifolds with the \(L^p\)-estimates of eigenfunctions of operators including a variety of examples, harmonic oscillators, anharmonic oscillators, etc. First, we investigate \(L^p\)-boundedness of pseudo-multipliers in the setting of Hörmander–Mihlin type conditions. We also prove \(L^\infty\)-BMO estimates for pseudo-multipliers. Later, we concentrate our investigation to settle \(L^p\)-\(L^q\) boundedness of the Fourier multipliers and pseudo-multipliers operators for the range \(1<p \le 2 \le q<\infty .\) On the way to achieve our goal of \(L^p\)-\(L^q\) boundedness, we prove two classical inequalities, namely, Paley inequality and Hausdorff–Young–Paley inequality for smooth manifolds. Finally, we present some examples about the well-posedness of abstract non-linear equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信