{"title":"Precise Detection, Control and Synthesis of Chiral Compounds at Single-Molecule Resolution","authors":"Chen Yang, Weilin Hu, Xuefeng Guo","doi":"10.1007/s40820-023-01184-5","DOIUrl":"10.1007/s40820-023-01184-5","url":null,"abstract":"<div><p>Chirality, as the symmetric breaking of molecules, plays an essential role in physical, chemical and especially biological processes, which highlights the accurate distinction among heterochiralities as well as the precise preparation for homochirality. To this end, the well-designed structure-specific recognizer and catalysis reactor are necessitated, respectively. However, each kind of target molecules requires a custom-made chiral partner and the dynamic disorder of spatial-orientation distribution of molecules at the ensemble level leads to an inefficient protocol. In this perspective article, we developed a universal strategy capable of realizing the chirality detection and control by the external symmetry breaking based on the alignment of the molecular frame to external stimuli. Specifically, in combination with the discussion about the relationship among the chirality (molecule), spin (electron) and polarization (photon), i.e., the three natural symmetry breaking, single-molecule junctions were proposed to achieve a single-molecule/event-resolved detection and synthesis. The fixation of the molecular orientation and the CMOS-compatibility provide an efficient interface to achieve the external input of symmetry breaking. This perspective is believed to offer more efficient applications in accurate chirality detection and precise asymmetric synthesis via the close collaboration of chemists, physicists, materials scientists, and engineers.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10240127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhijie Chen, Renji Zheng, Teng Bao, Tianyi Ma, Wei Wei, Yansong Shen, Bing-Jie Ni
{"title":"Dual-Doped Nickel Sulfide for Electro-Upgrading Polyethylene Terephthalate into Valuable Chemicals and Hydrogen Fuel","authors":"Zhijie Chen, Renji Zheng, Teng Bao, Tianyi Ma, Wei Wei, Yansong Shen, Bing-Jie Ni","doi":"10.1007/s40820-023-01181-8","DOIUrl":"10.1007/s40820-023-01181-8","url":null,"abstract":"<p>Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management. Recently, electrocatalytically converting polyethylene terephthalate (PET) into formate and hydrogen has aroused great interest, while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol (PET monomer) oxidation reaction (EGOR) remains a challenge. Herein, a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy. Benefiting from the interconnected ultrathin nanosheet architecture, dual dopants induced up-shifting d band centre and facilitated in situ structural reconstruction, the Co and Cl co-doped Ni<sub>3</sub>S<sub>2</sub> (Co, Cl-NiS) outperforms the single-doped and undoped analogues for EGOR. The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency (> 92%) and selectivity (> 91%) at high current densities (> 400 mA cm<sup>−2</sup>). Besides producing formate, the bifunctional Co, Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h<sup>−1</sup> in 2 M KOH, at 1.7 V. This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes, but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production.</p>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10231022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norah S. Alghamdi, Masud Rana, Xiyue Peng, Yongxin Huang, Jaeho Lee, Jingwei Hou, Ian R. Gentle, Lianzhou Wang, Bin Luo
{"title":"Zinc–Bromine Rechargeable Batteries: From Device Configuration, Electrochemistry, Material to Performance Evaluation","authors":"Norah S. Alghamdi, Masud Rana, Xiyue Peng, Yongxin Huang, Jaeho Lee, Jingwei Hou, Ian R. Gentle, Lianzhou Wang, Bin Luo","doi":"10.1007/s40820-023-01174-7","DOIUrl":"10.1007/s40820-023-01174-7","url":null,"abstract":"<div><p>Zinc–bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities remain to improve the efficiency and stability of these batteries for long-life operation. Here, we discuss the device configurations, working mechanisms and performance evaluation of ZBRBs. Both non-flow (static) and flow-type cells are highlighted in detail in this review. The fundamental electrochemical aspects, including the key challenges and promising solutions, are discussed, with particular attention paid to zinc and bromine half-cells, as their performance plays a critical role in determining the electrochemical performance of the battery system. The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques. The review concludes with insights into future developments and prospects for high-performance ZBRBs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10144410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High-Performance Zinc Anode: Principles, Strategies, and Challenges","authors":"Yuxin Gong, Bo Wang, Huaizheng Ren, Deyu Li, Dianlong Wang, Huakun Liu, Shixue Dou","doi":"10.1007/s40820-023-01177-4","DOIUrl":"10.1007/s40820-023-01177-4","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>The mechanisms of the surface modification and structure design of zinc anode current collectors were summarized.</p>\u0000 </li>\u0000 <li>\u0000 <p>The recent advances of high-performance zinc anode current collectors were reviewed and categorized according to their working mechanisms.</p>\u0000 </li>\u0000 <li>\u0000 <p>The possible prospects and directions of zinc anode research were discussed.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10517832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress and Challenges Toward Effective Flexible Perovskite Solar Cells","authors":"Xiongjie Li, Haixuan Yu, Zhirong Liu, Junyi Huang, Xiaoting Ma, Yuping Liu, Qiang Sun, Letian Dai, Shahzada Ahmad, Yan Shen, Mingkui Wang","doi":"10.1007/s40820-023-01165-8","DOIUrl":"10.1007/s40820-023-01165-8","url":null,"abstract":"<div><p>The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous. The photoactive layer, i.e., the perovskite thin film, as a critical component of flexible perovskite solar cells (F-PSCs), still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity. This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs. We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance. Furthermore, we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films, such as internal stress engineering, grain boundary modification, self-healing strategy, and crystallization regulation. The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed. As concluding remarks, we propose our viewpoints on the large-scale commercial application of F-PSCs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10517829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Zhou, Aixuan Du, Dong Ding, Zexiang Liu, Ye Wang, Haizhe Zhong, Henan Li, Hanlin Hu, Yumeng Shi
{"title":"Achieving Tunable Cold/Warm White-Light Emission in a Single Perovskite Material with Near-Unity Photoluminescence Quantum Yield","authors":"Bo Zhou, Aixuan Du, Dong Ding, Zexiang Liu, Ye Wang, Haizhe Zhong, Henan Li, Hanlin Hu, Yumeng Shi","doi":"10.1007/s40820-023-01168-5","DOIUrl":"10.1007/s40820-023-01168-5","url":null,"abstract":"<p>Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications. This paper reports a novel zero-dimensional perovskite, Rb<sub>4</sub>CdCl<sub>6</sub>:Sn<sup><i>2</i>+</sup><sub>,</sub> Mn<sup><i>2</i>+</sup>, which demonstrates exceptional white-light properties including adjustable correlated color temperature, high color rendering index of up to 85, and near-unity photoluminescence quantum yield of 99%. Using a co-doping strategy involving Sn<sup>2+</sup> and Mn<sup>2+</sup>, cyan-orange dual-band emission with complementary spectral ranges is activated by the self-trapped excitons and <i>d-d</i> transitions of the Sn<sup>2+</sup> and Mn<sup>2+</sup> centers in the Rb<sub>4</sub>CdCl<sub>6</sub> host, respectively. Intriguingly, although Mn<sup>2+</sup> ions doped in Rb<sub>4</sub>CdCl<sub>6</sub> are difficult to excite, efficient Mn<sup>2+</sup> emission can be realized through an ultra-high-efficient energy transfer between Sn<sup>2+</sup> and Mn<sup>2+</sup> via the formation of adjacent exchange-coupled Sn–Mn pairs. Benefiting from this efficient Dexter energy transfer process, the dual emission shares the same optimal excitation wavelengths of the Sn<sup>2+</sup> centers and suppresses the non-radiative vibration relaxation significantly. Moreover, the relative intensities of the dual-emission components can be modulated flexibly by adjusting the fraction of the Sn<sup>2+</sup> ions to the Sn–Mn pairs. This co-doping approach involving short-range energy transfer represents a promising avenue for achieving high-quality white light within a single material.</p>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10517830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Luo, Yufan Xia, Shuang Chen, Xingxing Wu, Ran Zeng, Xuan Zhang, Hongge Pan, Mi Yan, Tingting Shi, Kai Tao, Ben Bin Xu, Yinzhu Jiang
{"title":"Synergistic “Anchor-Capture” Enabled by Amino and Carboxyl for Constructing Robust Interface of Zn Anode","authors":"Zhen Luo, Yufan Xia, Shuang Chen, Xingxing Wu, Ran Zeng, Xuan Zhang, Hongge Pan, Mi Yan, Tingting Shi, Kai Tao, Ben Bin Xu, Yinzhu Jiang","doi":"10.1007/s40820-023-01171-w","DOIUrl":"10.1007/s40820-023-01171-w","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>The synergistic “anchor-capture” mechanism of polar groups on Zn stripping/plating process is firstly proposed.</p>\u0000 </li>\u0000 <li>\u0000 <p>The amino group firmly anchors on Zn surface and the carboxyl group strongly captures Zn<sup>2+</sup>, constructing a robust anode–electrolyte interface and inducing uniform Zn deposition.</p>\u0000 </li>\u0000 <li>\u0000 <p>The ultra-stable cycle lifespan of Zn–Zn symmetric cell (over 2800 h) and high utilization rate of Zn anode (the depth of discharge up to 68% for 200 h) are achieved under the proposal of synergistic “anchor-capture.”</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10119186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of Multiple Heterointerfaces in a Hierarchical 0D@2D@1D Structure for Lightweight, Flexible, and Hydrophobic Multifunctional Electromagnetic Protective Fabrics","authors":"Shuo Zhang, Xuehua Liu, Chenyu Jia, Zhengshuo Sun, Haowen Jiang, Zirui Jia, Guanglei Wu","doi":"10.1007/s40820-023-01179-2","DOIUrl":"10.1007/s40820-023-01179-2","url":null,"abstract":"<div><p>The development of wearable multifunctional electromagnetic protective fabrics with multifunctional, low cost, and high efficiency remains a challenge. Here, inspired by the unique flower branch shape of “Thunberg’s meadowsweet” in nature, a nanofibrous composite membrane with hierarchical structure was constructed. Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane. The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor, and intelligently integrate multiple heterostructures to enhance dielectric polarization, which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials. Due to the synergistic enhancement of electrospinning-derived carbon nanofiber “stems”, MOF-derived carbon nanosheet “petals” and transition metal selenide nano-particle “stamens”, the Co<sub>x</sub>Se<sub>y</sub>/NiSe@CNSs@CNFs (CNCC) composite membrane obtains a minimum reflection loss value (RL<sub>min</sub>) of -68.40 dB at 2.6 mm and a maximum effective absorption bandwidth (EAB) of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%. In addition, the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility, water resistance, thermal management, and other multifunctional properties. This work provides unique perspectives for the precise design and rational application of multifunctional fabrics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10096116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daming Feng, Lixue Zhou, Timothy J. White, Anthony K. Cheetham, Tianyi Ma, Fengxia Wei
{"title":"Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia","authors":"Daming Feng, Lixue Zhou, Timothy J. White, Anthony K. Cheetham, Tianyi Ma, Fengxia Wei","doi":"10.1007/s40820-023-01169-4","DOIUrl":"10.1007/s40820-023-01169-4","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>Recent advances in the metal–organic framework (MOF)-related catalysts for electrochemical ammonia synthesis protocols under ambient reaction conditions are summarized and discussed.</p>\u0000 </li>\u0000 <li>\u0000 <p>The design and fabrication of efficient electrocatalysts from MOF for the reduction of N<sub>2</sub> and NO<sub>3</sub><sup>−</sup> are systematically analyzed.</p>\u0000 </li>\u0000 <li>\u0000 <p>Based on the current advances, the ongoing challenges and promising perspectives are highlighted.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449763/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10135364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Xu, Peng Ye, Jianwen Peng, Haolei Geng, Yexiang Cui, Di Bao, Renjie Lu, Hongyu Zhu, Yanji Zhu, Huaiyuan Wang
{"title":"Cerium Methacrylate Assisted Preparation of Highly Thermally Conductive and Anticorrosive Multifunctional Coatings for Heat Conduction Metals Protection","authors":"Fei Xu, Peng Ye, Jianwen Peng, Haolei Geng, Yexiang Cui, Di Bao, Renjie Lu, Hongyu Zhu, Yanji Zhu, Huaiyuan Wang","doi":"10.1007/s40820-023-01163-w","DOIUrl":"10.1007/s40820-023-01163-w","url":null,"abstract":"<div><p>Preparing polymeric coatings with well corrosion resistance and high thermal conductivity (TC) to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task. Here we report a multifunctional epoxy composite coating (F-CB/CEP) by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through \"cation-π\" interaction. The prepared F-CB/CEP coating presents a high TC of 4.29 W m<sup>−1</sup> K<sup>−1</sup>, which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating. Meanwhile, the low-frequency impedance remains at 5.1 × 10<sup>11</sup> Ω cm<sup>2</sup> even after 181 days of immersion in 3.5 wt% NaCl solution. Besides, the coating also exhibits well hydrophobicity, self-cleaning properties, temperature resistance and adhesion. This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials, especially for heat conduction metals protection.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10048315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}