Integration of Multiple Heterointerfaces in a Hierarchical 0D@2D@1D Structure for Lightweight, Flexible, and Hydrophobic Multifunctional Electromagnetic Protective Fabrics
IF 31.6 1区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Integration of Multiple Heterointerfaces in a Hierarchical 0D@2D@1D Structure for Lightweight, Flexible, and Hydrophobic Multifunctional Electromagnetic Protective Fabrics","authors":"Shuo Zhang, Xuehua Liu, Chenyu Jia, Zhengshuo Sun, Haowen Jiang, Zirui Jia, Guanglei Wu","doi":"10.1007/s40820-023-01179-2","DOIUrl":null,"url":null,"abstract":"<div><p>The development of wearable multifunctional electromagnetic protective fabrics with multifunctional, low cost, and high efficiency remains a challenge. Here, inspired by the unique flower branch shape of “Thunberg’s meadowsweet” in nature, a nanofibrous composite membrane with hierarchical structure was constructed. Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane. The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor, and intelligently integrate multiple heterostructures to enhance dielectric polarization, which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials. Due to the synergistic enhancement of electrospinning-derived carbon nanofiber “stems”, MOF-derived carbon nanosheet “petals” and transition metal selenide nano-particle “stamens”, the Co<sub>x</sub>Se<sub>y</sub>/NiSe@CNSs@CNFs (CNCC) composite membrane obtains a minimum reflection loss value (RL<sub>min</sub>) of -68.40 dB at 2.6 mm and a maximum effective absorption bandwidth (EAB) of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%. In addition, the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility, water resistance, thermal management, and other multifunctional properties. This work provides unique perspectives for the precise design and rational application of multifunctional fabrics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01179-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of wearable multifunctional electromagnetic protective fabrics with multifunctional, low cost, and high efficiency remains a challenge. Here, inspired by the unique flower branch shape of “Thunberg’s meadowsweet” in nature, a nanofibrous composite membrane with hierarchical structure was constructed. Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane. The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor, and intelligently integrate multiple heterostructures to enhance dielectric polarization, which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials. Due to the synergistic enhancement of electrospinning-derived carbon nanofiber “stems”, MOF-derived carbon nanosheet “petals” and transition metal selenide nano-particle “stamens”, the CoxSey/NiSe@CNSs@CNFs (CNCC) composite membrane obtains a minimum reflection loss value (RLmin) of -68.40 dB at 2.6 mm and a maximum effective absorption bandwidth (EAB) of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%. In addition, the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility, water resistance, thermal management, and other multifunctional properties. This work provides unique perspectives for the precise design and rational application of multifunctional fabrics.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.