Nano-Micro Letters最新文献

筛选
英文 中文
Highly Reversible Zn Metal Anodes Enabled by Increased Nucleation Overpotential 高可逆锌金属阳极通过增加成核过电位实现
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-07-06 DOI: 10.1007/s40820-023-01136-z
Zhengqiang Hu, Fengling Zhang, Anbin Zhou, Xin Hu, Qiaoyi Yan, Yuhao Liu, Faiza Arshad, Zhujie Li, Renjie Chen, Feng Wu, Li Li
{"title":"Highly Reversible Zn Metal Anodes Enabled by Increased Nucleation Overpotential","authors":"Zhengqiang Hu,&nbsp;Fengling Zhang,&nbsp;Anbin Zhou,&nbsp;Xin Hu,&nbsp;Qiaoyi Yan,&nbsp;Yuhao Liu,&nbsp;Faiza Arshad,&nbsp;Zhujie Li,&nbsp;Renjie Chen,&nbsp;Feng Wu,&nbsp;Li Li","doi":"10.1007/s40820-023-01136-z","DOIUrl":"10.1007/s40820-023-01136-z","url":null,"abstract":"<div><p>Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate (Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H<sub>2</sub>O in the solvation sheath of Zn<sup>2+</sup>, increasing de-solvation energy. Concurrently, the Na<sup>+</sup> could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn<sup>2+</sup> aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm<sup>−2</sup>. Zn-LiMn<sub>2</sub>O<sub>4</sub> full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition.</p>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01136-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4253304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Thermochromic, Viscoelastic Nacre-like Nanocomposite for the Smart Thermal Management of Planar Electronics 一种用于平面电子智能热管理的热致变色粘弹性类纳米复合材料
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-07-05 DOI: 10.1007/s40820-023-01149-8
Jiemin Wang, Tairan Yang, Zequn Wang, Xuhui Sun, Meng An, Dan Liu, Changsheng Zhao, Gang Zhang, Weiwei Lei
{"title":"A Thermochromic, Viscoelastic Nacre-like Nanocomposite for the Smart Thermal Management of Planar Electronics","authors":"Jiemin Wang,&nbsp;Tairan Yang,&nbsp;Zequn Wang,&nbsp;Xuhui Sun,&nbsp;Meng An,&nbsp;Dan Liu,&nbsp;Changsheng Zhao,&nbsp;Gang Zhang,&nbsp;Weiwei Lei","doi":"10.1007/s40820-023-01149-8","DOIUrl":"10.1007/s40820-023-01149-8","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Construction of a viscoelastic composite nacre with a ripple-like layered architecture through supramolecular interactions.</p>\u0000 </li>\u0000 <li>\u0000 <p>Outstanding self-adhesion, self-healing and scrape-resistant mechanical and thermal properties.</p>\u0000 </li>\u0000 <li>\u0000 <p>Utility as an integrated heat spreader and TIMs for “chameleon-like” thermal management of planar soft electronics.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01149-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4212379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers 含芳香层状钙钛矿太阳能电池的研究进展
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-07-05 DOI: 10.1007/s40820-023-01141-2
Yuping Gao, Xiyue Dong, Yongsheng Liu
{"title":"Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers","authors":"Yuping Gao,&nbsp;Xiyue Dong,&nbsp;Yongsheng Liu","doi":"10.1007/s40820-023-01141-2","DOIUrl":"10.1007/s40820-023-01141-2","url":null,"abstract":"<div><p>Layered two dimensional (2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along  &lt; 100 &gt;  orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells (PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs.</p>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01141-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4212381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tuning Active Metal Atomic Spacing by Filling of Light Atoms and Resulting Reversed Hydrogen Adsorption-Distance Relationship for Efficient Catalysis 利用轻原子填充调节活性金属原子间距及由此产生的反氢吸附-距离关系实现高效催化
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-07-03 DOI: 10.1007/s40820-023-01142-1
Ding Chen, Ruihu Lu, Ruohan Yu, Hongyu Zhao, Dulan Wu, Youtao Yao, Kesong Yu, Jiawei Zhu, Pengxia Ji, Zonghua Pu, Zongkui Kou, Jun Yu, Jinsong Wu, Shichun Mu
{"title":"Tuning Active Metal Atomic Spacing by Filling of Light Atoms and Resulting Reversed Hydrogen Adsorption-Distance Relationship for Efficient Catalysis","authors":"Ding Chen,&nbsp;Ruihu Lu,&nbsp;Ruohan Yu,&nbsp;Hongyu Zhao,&nbsp;Dulan Wu,&nbsp;Youtao Yao,&nbsp;Kesong Yu,&nbsp;Jiawei Zhu,&nbsp;Pengxia Ji,&nbsp;Zonghua Pu,&nbsp;Zongkui Kou,&nbsp;Jun Yu,&nbsp;Jinsong Wu,&nbsp;Shichun Mu","doi":"10.1007/s40820-023-01142-1","DOIUrl":"10.1007/s40820-023-01142-1","url":null,"abstract":"<div><p>Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism, but still remains a challenge. Here, we develop a strategy to dilute catalytically active metal interatomic spacing (d<sub>M-M</sub>) with light atoms and discover the unusual adsorption patterns. For example, by elevating the content of boron as interstitial atoms, the atomic spacing of osmium (d<sub>Os-Os</sub>) gradually increases from 2.73 to 2.96 Å. More importantly, we find that, with the increase in d<sub>Os-Os</sub>, the hydrogen adsorption-distance relationship is reversed via downshifting <i>d</i>-band states, which breaks the traditional cognition, thereby optimizing the H adsorption and H<sub>2</sub>O dissociation on the electrode surface during the catalytic process; this finally leads to a nearly linear increase in hydrogen evolution reaction activity. Namely, the maximum d<sub>Os-Os</sub> of 2.96 Å presents the optimal HER activity (8 mV @ 10 mA cm<sup>−2</sup>) in alkaline media as well as suppressed O adsorption and thus promoted stability. It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01142-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4125920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Crystallization and Orientation Modulation Enable Highly Efficient Doctor-Bladed Perovskite Solar Cells 结晶和取向调制使高效的医生叶片钙钛矿太阳能电池成为可能
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-06-29 DOI: 10.1007/s40820-023-01138-x
Jianhui Chang, Erming Feng, Hengyue Li, Yang Ding, Caoyu Long, Yuanji Gao, Yingguo Yang, Chenyi Yi, Zijian Zheng, Junliang Yang
{"title":"Crystallization and Orientation Modulation Enable Highly Efficient Doctor-Bladed Perovskite Solar Cells","authors":"Jianhui Chang,&nbsp;Erming Feng,&nbsp;Hengyue Li,&nbsp;Yang Ding,&nbsp;Caoyu Long,&nbsp;Yuanji Gao,&nbsp;Yingguo Yang,&nbsp;Chenyi Yi,&nbsp;Zijian Zheng,&nbsp;Junliang Yang","doi":"10.1007/s40820-023-01138-x","DOIUrl":"10.1007/s40820-023-01138-x","url":null,"abstract":"<div><p>With the rapid rise in perovskite solar cells (PSCs) performance, it is imperative to develop scalable fabrication techniques to accelerate potential commercialization. However, the power conversion efficiencies (PCEs) of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones. Herein, the additive methylammonium chloride (MACl) is introduced to modulate the crystallization and orientation of a two-step sequential doctor-bladed perovskite film in ambient conditions. MACl can significantly improve perovskite film quality and increase grain size and crystallinity, thus decreasing trap density and suppressing nonradiative recombination. Meanwhile, MACl also promotes the preferred face-up orientation of the (100) plane of perovskite film, which is more conducive to the transport and collection of carriers, thereby significantly improving the fill factor. As a result, a champion PCE of 23.14% and excellent long-term stability are achieved for PSCs based on the structure of ITO/SnO<sub>2</sub>/FA<sub>1-<i>x</i></sub>MA<sub><i>x</i></sub>Pb(I<sub>1-<i>y</i></sub>Br<sub><i>y</i></sub>)<sub>3</sub>/Spiro-OMeTAD/Ag. The superior PCEs of 21.20% and 17.54% are achieved for 1.03 cm<sup>2</sup> PSC and 10.93 cm<sup>2</sup> mini-module, respectively. These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications.</p><img></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01138-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5119120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quasi-Three-Dimensional Cyclotriphosphazene-Based Covalent Organic Framework Nanosheet for Efficient Oxygen Reduction 准三维环三磷腈基共价有机框架纳米片的高效氧还原
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-06-29 DOI: 10.1007/s40820-023-01111-8
Jianhong Chang, Cuiyan Li, Xiaoxia Wang, Daohao Li, Jie Zhang, Xiaoming Yu, Hui Li, Xiangdong Yao, Valentin Valtchev, Shilun Qiu, Qianrong Fang
{"title":"Quasi-Three-Dimensional Cyclotriphosphazene-Based Covalent Organic Framework Nanosheet for Efficient Oxygen Reduction","authors":"Jianhong Chang,&nbsp;Cuiyan Li,&nbsp;Xiaoxia Wang,&nbsp;Daohao Li,&nbsp;Jie Zhang,&nbsp;Xiaoming Yu,&nbsp;Hui Li,&nbsp;Xiangdong Yao,&nbsp;Valentin Valtchev,&nbsp;Shilun Qiu,&nbsp;Qianrong Fang","doi":"10.1007/s40820-023-01111-8","DOIUrl":"10.1007/s40820-023-01111-8","url":null,"abstract":"<div><p>Metal-free carbon-based materials are considered as promising oxygen reduction reaction (ORR) electrocatalysts for clean energy conversion, and their highly dense and exposed carbon active sites are crucial for efficient ORR. In this work, two unique quasi-three-dimensional cyclotriphosphazene-based covalent organic frameworks (Q3CTP-COFs) and their nanosheets were successfully synthesized and applied as ORR electrocatalysts. The abundant electrophilic structure in Q3CTP-COFs induces a high density of carbon active sites, and the unique bilayer stacking of [6 + 3] imine-linked backbone facilitates the exposure of active carbon sites and accelerates mass diffusion during ORR. In particular, bulk Q3CTP-COFs can be easily exfoliated into thin COF nanosheets (NSs) due to the weak interlayer π–π interactions. Q3CTP-COF NSs exhibit highly efficient ORR catalytic activity (half-wave potential of 0.72 V vs. RHE in alkaline electrolyte), which is one of the best COF-based ORR electrocatalysts reported so far. Furthermore, Q3CTP-COF NSs can serve as a promising cathode for Zn-air batteries (delivered power density of 156 mW cm<sup>–2</sup> at 300 mA cm<sup>–2</sup>). This judicious design and accurate synthesis of such COFs with highly dense and exposed active sites and their nanosheets will promote the development of metal-free carbon-based electrocatalysts. </p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01111-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5121659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Efficient CO2 Reduction to Formate on CsPbI3 Nanocrystals Wrapped with Reduced Graphene Oxide 在还原氧化石墨烯包裹的CsPbI3纳米晶体上有效地将CO2还原为甲酸盐
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-06-29 DOI: 10.1007/s40820-023-01132-3
Minh Tam Hoang, Chen Han, Zhipeng Ma, Xin Mao, Yang Yang, Sepideh Sadat Madani, Paul Shaw, Yongchao Yang, Lingyi Peng, Cui Ying Toe, Jian Pan, Rose Amal, Aijun Du, Tuquabo Tesfamichael, Zhaojun Han, Hongxia Wang
{"title":"Efficient CO2 Reduction to Formate on CsPbI3 Nanocrystals Wrapped with Reduced Graphene Oxide","authors":"Minh Tam Hoang,&nbsp;Chen Han,&nbsp;Zhipeng Ma,&nbsp;Xin Mao,&nbsp;Yang Yang,&nbsp;Sepideh Sadat Madani,&nbsp;Paul Shaw,&nbsp;Yongchao Yang,&nbsp;Lingyi Peng,&nbsp;Cui Ying Toe,&nbsp;Jian Pan,&nbsp;Rose Amal,&nbsp;Aijun Du,&nbsp;Tuquabo Tesfamichael,&nbsp;Zhaojun Han,&nbsp;Hongxia Wang","doi":"10.1007/s40820-023-01132-3","DOIUrl":"10.1007/s40820-023-01132-3","url":null,"abstract":"<div><div>\u0000 <span>AbstractSection</span>\u0000 Highlights\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>A rational design of metal halide perovskites for achieving efficient CO<sub>2</sub> reduction reaction was demonstrated.</p>\u0000 </li>\u0000 <li>\u0000 <p>The stability of CsPbI<sub>3</sub> perovskite nanocrystal (NCs) in aqueous electrolyte was improved by compositing with reduced graphene oxide (rGO).</p>\u0000 </li>\u0000 <li>\u0000 <p>The CsPbI<sub>3</sub>/rGO catalyst exhibited &gt; 92% Faradaic efficiency toward formate production with high current density which was associated with the synergistic effects between the CsPbI<sub>3</sub> NCs and rGO.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 \u0000 <span>AbstractSection</span>\u0000 Abstract\u0000 <p>Transformation of greenhouse gas (CO<sub>2</sub>) into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis. Metal halide perovskite catalysts have shown their potential in promoting CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR), however, their low phase stability has limited their application perspective. Herein, we present a reduced graphene oxide (rGO) wrapped CsPbI<sub>3</sub> perovskite nanocrystal (NC) CO<sub>2</sub>RR catalyst (CsPbI<sub>3</sub>/rGO), demonstrating enhanced stability in the aqueous electrolyte. The CsPbI<sub>3</sub>/rGO catalyst exhibited &gt; 92% Faradaic efficiency toward formate production at a CO<sub>2</sub>RR current density of ~ 12.7 mA cm<sup>−2</sup>. Comprehensive characterizations revealed the superior performance of the CsPbI<sub>3</sub>/rGO catalyst originated from the synergistic effects between the CsPbI<sub>3</sub> NCs and rGO, i.e., rGO stabilized the α-CsPbI<sub>3</sub> phase and tuned the charge distribution, thus lowered the energy barrier for the protonation process and the formation of *HCOO intermediate, which resulted in high CO<sub>2</sub>RR selectivity toward formate. This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO<sub>2</sub>RR toward valuable fuels.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01132-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5121650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Ion Co-Regulation System Enabling High-Performance Electrochemical Artificial Yarn Muscles with Energy-Free Catch States 双离子共调节系统使高性能电化学人造纱线肌肉具有无能量捕获状态
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-06-29 DOI: 10.1007/s40820-023-01133-2
Ming Ren, Lizhong Dong, Xiaobo Wang, Yuxin Li, Yueran Zhao, Bo Cui, Guang Yang, Wei Li, Xiaojie Yuan, Tao Zhou, Panpan Xu, Xiaona Wang, Jiangtao Di, Qingwen Li
{"title":"Dual-Ion Co-Regulation System Enabling High-Performance Electrochemical Artificial Yarn Muscles with Energy-Free Catch States","authors":"Ming Ren,&nbsp;Lizhong Dong,&nbsp;Xiaobo Wang,&nbsp;Yuxin Li,&nbsp;Yueran Zhao,&nbsp;Bo Cui,&nbsp;Guang Yang,&nbsp;Wei Li,&nbsp;Xiaojie Yuan,&nbsp;Tao Zhou,&nbsp;Panpan Xu,&nbsp;Xiaona Wang,&nbsp;Jiangtao Di,&nbsp;Qingwen Li","doi":"10.1007/s40820-023-01133-2","DOIUrl":"10.1007/s40820-023-01133-2","url":null,"abstract":"<div><p>Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions and inefficient “rocking-chair” ion migration. To address these limitations, we present an electrochemical artificial yarn muscle design driven by a dual-ion co-regulation system. By utilizing two reaction channels, this system shortens ion migration pathways, leading to faster and more efficient actuation. During the charging/discharging process, <span>({text{PF}}_{6}^{ - })</span> ions react with carbon nanotube yarn, while Li<sup>+</sup> ions react with an Al foil. The intercalation reaction between <span>({text{PF}}_{6}^{ - })</span> and collapsed carbon nanotubes allows the yarn muscle to achieve an energy-free high-tension catch state. The dual-ion coordinated yarn muscles exhibit superior contractile stroke, maximum contractile rate, and maximum power densities, exceeding those of “rocking-chair” type ion migration yarn muscles. The dual-ion co-regulation system enhances the ion migration rate during actuation, resulting in improved performance. Moreover, the yarn muscles can withstand high levels of isometric stress, displaying a stress of 61 times that of skeletal muscles and 8 times that of “rocking-chair” type yarn muscles at higher frequencies. This technology holds significant potential for various applications, including prosthetics and robotics.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01133-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5121927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Materials and Innovative Strategies for Wearable Thermal Management Applications 可穿戴热管理应用的功能材料和创新策略
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-06-29 DOI: 10.1007/s40820-023-01126-1
Yeongju Jung, Minwoo Kim, Taegyeom Kim, Jiyong Ahn, Jinwoo Lee, Seung Hwan Ko
{"title":"Functional Materials and Innovative Strategies for Wearable Thermal Management Applications","authors":"Yeongju Jung,&nbsp;Minwoo Kim,&nbsp;Taegyeom Kim,&nbsp;Jiyong Ahn,&nbsp;Jinwoo Lee,&nbsp;Seung Hwan Ko","doi":"10.1007/s40820-023-01126-1","DOIUrl":"10.1007/s40820-023-01126-1","url":null,"abstract":"<div><div>\u0000 <span>AbstractSection</span>\u0000 Highlights\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>This article systematically reviews the thermal management wearables with a specific emphasis on materials and strategies to regulate the human body temperature.</p>\u0000 </li>\u0000 <li>\u0000 <p>Thermal management wearables are subdivided into the active and passive thermal managing methods.</p>\u0000 </li>\u0000 <li>\u0000 <p>The strength and weakness of each thermal regulatory wearables are discussed in details from the view point of practical usage in real-life.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 \u0000 <span>AbstractSection</span>\u0000 Abstract\u0000 <p>Thermal management is essential in our body as it affects various bodily functions, ranging from thermal discomfort to serious organ failures, as an example of the worst-case scenario. There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body, employing diverse materials and systematic approaches to attaining thermal homeostasis. This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables, particularly emphasizing the strategic methodology to regulate body temperature. There exist several methods to promote personal thermal management in a wearable form. For instance, we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface. Thus, we classify many studies into two branches, passive and active thermal management modes, which are further subdivided into specific strategies. Apart from discussing the strategies and their mechanisms, we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.</p>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01126-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5121647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Engineering Spin States of Isolated Copper Species in a Metal–Organic Framework Improves Urea Electrosynthesis 金属-有机骨架中分离铜的工程自旋态改善了尿素的电合成
IF 26.6 1区 材料科学
Nano-Micro Letters Pub Date : 2023-06-21 DOI: 10.1007/s40820-023-01127-0
Yuhang Gao, Jingnan Wang, Yijun Yang, Jian Wang, Chuang Zhang, Xi Wang, Jiannian Yao
{"title":"Engineering Spin States of Isolated Copper Species in a Metal–Organic Framework Improves Urea Electrosynthesis","authors":"Yuhang Gao,&nbsp;Jingnan Wang,&nbsp;Yijun Yang,&nbsp;Jian Wang,&nbsp;Chuang Zhang,&nbsp;Xi Wang,&nbsp;Jiannian Yao","doi":"10.1007/s40820-023-01127-0","DOIUrl":"10.1007/s40820-023-01127-0","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>The single-atom Cu species with <i>S</i> = 0 spin ground state in Cu<sup>III</sup>-HHTP have been fabricated.</p>\u0000 </li>\u0000 <li>\u0000 <p>The Cu<sup>III</sup>-HHTP exhibits remarkable performance with a high urea yield of 7.780 mmol h<sup>−1</sup> g<sup>−1</sup> with the corresponding Faradaic efficiency of 23.09% at − 0.6 V (vs. RHE).</p>\u0000 </li>\u0000 <li>\u0000 <p>Low spin state and empty (<span>({d}_{{{text{x}}^{2}text{-y}}^{2}}^{0})</span>) orbitals are favorable to enhance the production urea of C–N coupling process.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01127-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4824807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信