Long Pan, Rongxiang Hu, Yuan Zhang, Dawei Sha, Xin Cao, Zhuoran Li, Yonggui Zhao, Jiangxiang Ding, Yaping Wang, ZhengMing Sun
{"title":"通过双碲化物与Ti3C2Tx MXene集成的异质结构工程实现内置电场驱动的超高速率K离子存储。","authors":"Long Pan, Rongxiang Hu, Yuan Zhang, Dawei Sha, Xin Cao, Zhuoran Li, Yonggui Zhao, Jiangxiang Ding, Yaping Wang, ZhengMing Sun","doi":"10.1007/s40820-023-01202-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>Heterostructure engineering is proposed to construct CoTe<sub>2</sub>/ZnTe heterostructures with built-in electric field.</p>\n </li>\n <li>\n <p>Conductive and elastic Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene is introduced to improve the conductivity and alleviate the volume change of CoTe<sub>2</sub>/ZnTe upon cycling.</p>\n </li>\n <li>\n <p>The resulting CoTe<sub>2</sub>/ZnTe/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> (CZT) demonstrates outstanding rate capability (137.0 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>) and cycling stability (175.3 mAh g<sup>−1</sup> after 4000 cycles at 3.0 A g<sup>−1</sup>). Moreover, the CZT-based full cells demonstrate excellent energy density (220.2 Wh kg<sup>−1</sup>) and power density (837.2 W kg<sup>−1</sup>).</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575839/pdf/","citationCount":"0","resultStr":"{\"title\":\"Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene\",\"authors\":\"Long Pan, Rongxiang Hu, Yuan Zhang, Dawei Sha, Xin Cao, Zhuoran Li, Yonggui Zhao, Jiangxiang Ding, Yaping Wang, ZhengMing Sun\",\"doi\":\"10.1007/s40820-023-01202-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>Heterostructure engineering is proposed to construct CoTe<sub>2</sub>/ZnTe heterostructures with built-in electric field.</p>\\n </li>\\n <li>\\n <p>Conductive and elastic Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene is introduced to improve the conductivity and alleviate the volume change of CoTe<sub>2</sub>/ZnTe upon cycling.</p>\\n </li>\\n <li>\\n <p>The resulting CoTe<sub>2</sub>/ZnTe/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> (CZT) demonstrates outstanding rate capability (137.0 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>) and cycling stability (175.3 mAh g<sup>−1</sup> after 4000 cycles at 3.0 A g<sup>−1</sup>). Moreover, the CZT-based full cells demonstrate excellent energy density (220.2 Wh kg<sup>−1</sup>) and power density (837.2 W kg<sup>−1</sup>).</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01202-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01202-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
开发具有快速K+扩散的高速率阳极材料对开发先进的钾离子电池(KIBs)很有吸引力,但尚未实现。在此,提出了异质结构工程来构建双过渡金属碲化物(CoTe2/ZnTe),其锚定在二维(2D)Ti3C2Tx MXene纳米片上。各种理论建模和实验结果表明,异质结构工程可以调节CoTe2/ZnTe界面的电子结构,改善K+的扩散和吸附。此外,CoTe2/ZnTe之间的不同功函数在CoTe2/ZnTe界面处诱导了强大的内置电场,提供了促进电荷传输的强大驱动力。此外,具有导电性和弹性的Ti3C2Tx可以有效地提高电极的导电性,并缓解CoTe2/ZnTe异质结构在循环时的体积变化。由于这些优点,所得到的CoTe2/ZnTe/Ti3C2Tx(CZT)表现出优异的倍率性能(在10A g-1下为137.0mAh g-1)和循环稳定性(在3.0A g-1下4000次循环后为175.3mAh g-1,具有89.4%的高容量保持率),基于CZT的全电池表现出高能量密度(220.2 Wh kg-1)和高功率密度(837.2 W kg-1)。这项工作通过集成异质结构工程和2D材料纳米复合,为下一代KIB设计先进的高速率阳极材料提供了一种通用而有效的策略。
Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene
Highlights
Heterostructure engineering is proposed to construct CoTe2/ZnTe heterostructures with built-in electric field.
Conductive and elastic Ti3C2Tx MXene is introduced to improve the conductivity and alleviate the volume change of CoTe2/ZnTe upon cycling.
The resulting CoTe2/ZnTe/Ti3C2Tx (CZT) demonstrates outstanding rate capability (137.0 mAh g−1 at 10 A g−1) and cycling stability (175.3 mAh g−1 after 4000 cycles at 3.0 A g−1). Moreover, the CZT-based full cells demonstrate excellent energy density (220.2 Wh kg−1) and power density (837.2 W kg−1).
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.