Computational Methods in Applied Mathematics最新文献

筛选
英文 中文
Adaptive Image Compression via Optimal Mesh Refinement 通过优化网格细化实现自适应图像压缩
IF 1.3 4区 数学
Computational Methods in Applied Mathematics Pub Date : 2024-01-01 DOI: 10.1515/cmam-2023-0097
Michael Feischl, Hubert Hackl
{"title":"Adaptive Image Compression via Optimal Mesh Refinement","authors":"Michael Feischl, Hubert Hackl","doi":"10.1515/cmam-2023-0097","DOIUrl":"https://doi.org/10.1515/cmam-2023-0097","url":null,"abstract":"The JPEG algorithm is a defacto standard for image compression. We investigate whether adaptive mesh refinement can be used to optimize the compression ratio and propose a new adaptive image compression algorithm. We prove that it produces a quasi-optimal subdivision grid for a given error norm with high probability. This subdivision can be stored with very little overhead and thus leads to an efficient compression algorithm. We demonstrate experimentally, that the new algorithm can achieve better compression ratios than standard JPEG compression with no visible loss of quality on many images. The mathematical core of this work shows that Binev’s optimal tree approximation algorithm is applicable to image compression with high probability, when we assume small additive Gaussian noise on the pixels of the image.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139079452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Posteriori Error Estimation for the Optimal Control of Time-Periodic Eddy Current Problems 时间周期涡流问题最优控制的后验误差估计
IF 1.3 4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-11-27 DOI: 10.1515/cmam-2023-0119
Monika Wolfmayr
{"title":"A Posteriori Error Estimation for the Optimal Control of Time-Periodic Eddy Current Problems","authors":"Monika Wolfmayr","doi":"10.1515/cmam-2023-0119","DOIUrl":"https://doi.org/10.1515/cmam-2023-0119","url":null,"abstract":"This work presents the multiharmonic analysis and derivation of functional type a posteriori estimates of a distributed eddy current optimal control problem and its state equation in a time-periodic setting. The existence and uniqueness of the solution of a weak space-time variational formulation for the optimality system and the forward problem are proved by deriving inf-sup and sup-sup conditions. Using the inf-sup and sup-sup conditions, we derive guaranteed, sharp and fully computable bounds of the approximation error for the optimal control problem and the forward problem in the functional type a posteriori estimation framework. We present here the first computational results on the derived estimates.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"130 3","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Discontinuous Galerkin Two-Grid Method for the Transient Navier–Stokes Equations 瞬态Navier-Stokes方程的不连续Galerkin双网格法
IF 1.3 4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-11-24 DOI: 10.1515/cmam-2023-0035
Kallol Ray, Deepjyoti Goswami, Saumya Bajpai
{"title":"Discontinuous Galerkin Two-Grid Method for the Transient Navier–Stokes Equations","authors":"Kallol Ray, Deepjyoti Goswami, Saumya Bajpai","doi":"10.1515/cmam-2023-0035","DOIUrl":"https://doi.org/10.1515/cmam-2023-0035","url":null,"abstract":"In this paper, we apply a two-grid scheme to the DG formulation of the 2D transient Navier–Stokes model. The two-grid algorithm consists of the following steps: Step 1 involves solving the nonlinear system on a coarse mesh with mesh size 𝐻, and Step 2 involves linearizing the nonlinear system by using the coarse grid solution on a fine mesh of mesh size ℎ and solving the resulting system to produce an approximate solution with desired accuracy. We establish optimal error estimates of the two-grid DG approximations for the velocity and pressure in energy and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0035_ineq_0001.png\" /> <jats:tex-math>L^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norms, respectively, for an appropriate choice of coarse and fine mesh parameters. We further discretize the two-grid DG model in time, using the backward Euler method, and derive the fully discrete error estimates. Finally, numerical results are presented to confirm the efficiency of the proposed scheme.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"22 9","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 𝐶1-𝑃7 Bell Finite Element on Triangle 一个𝐶1-𝑃7三角形上的贝尔有限元
IF 1.3 4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-11-22 DOI: 10.1515/cmam-2023-0068
Xuejun Xu, Shangyou Zhang
{"title":"A 𝐶1-𝑃7 Bell Finite Element on Triangle","authors":"Xuejun Xu, Shangyou Zhang","doi":"10.1515/cmam-2023-0068","DOIUrl":"https://doi.org/10.1515/cmam-2023-0068","url":null,"abstract":"We construct a &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0068_ineq_0001.png\" /&gt; &lt;jats:tex-math&gt;C^{1}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;P&lt;/m:mi&gt; &lt;m:mn&gt;7&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0068_ineq_0002.png\" /&gt; &lt;jats:tex-math&gt;P_{7}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; Bell finite element by restricting its normal derivative from a &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;P&lt;/m:mi&gt; &lt;m:mn&gt;6&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0068_ineq_0003.png\" /&gt; &lt;jats:tex-math&gt;P_{6}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; polynomial to a &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;P&lt;/m:mi&gt; &lt;m:mn&gt;5&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0068_ineq_0004.png\" /&gt; &lt;jats:tex-math&gt;P_{5}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; polynomial, and its second normal derivative from a &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;P&lt;/m:mi&gt; &lt;m:mn&gt;5&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0068_ineq_0004.png\" /&gt; &lt;jats:tex-math&gt;P_{5}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; polynomial to a &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;P&lt;/m:mi&gt; &lt;m:mn&gt;4&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0068_ineq_0006.png\" /&gt; &lt;jats:tex-math&gt;P_{4}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; polynomial, on the three edges of every triangle. On one triangle, the finite element space contains the &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;P&lt;/m:mi&gt; &lt;m:mn&gt;6&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0068_ineq_0003.png\" /&gt; &lt;jats:tex-math&gt;P_{6}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; polynomial space. We show the method converges at order 7 in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mi&gt;L&lt;/m:mi&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlin","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"128 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Pressure Recovery Using an Ultra-Weak Finite Element Method for the Pressure Poisson Equation and a Least-Squares Approach for the Gradient Equation 压力泊松方程的超弱有限元法和梯度方程的最小二乘法的最优压力恢复
IF 1.3 4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-11-20 DOI: 10.1515/cmam-2021-0242
Douglas R. Q. Pacheco, Olaf Steinbach
{"title":"Optimal Pressure Recovery Using an Ultra-Weak Finite Element Method for the Pressure Poisson Equation and a Least-Squares Approach for the Gradient Equation","authors":"Douglas R. Q. Pacheco, Olaf Steinbach","doi":"10.1515/cmam-2021-0242","DOIUrl":"https://doi.org/10.1515/cmam-2021-0242","url":null,"abstract":"Reconstructing the pressure from given flow velocities is a task arising in various applications, and the standard approach uses the Navier–Stokes equations to derive a Poisson problem for the pressure <jats:italic>p</jats:italic>. That method, however, artificially increases the regularity requirements on both solution and data. In this context, we propose and analyze two alternative techniques to determine <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2021-0242_eq_0228.png\" /> <jats:tex-math>{pin L^{2}(Omega)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The first is an ultra-weak variational formulation applying integration by parts to shift all derivatives to the test functions. We present conforming finite element discretizations and prove optimal convergence of the resulting Galerkin–Petrov method. The second approach is a least-squares method for the original gradient equation, reformulated and solved as an artificial Stokes system. To simplify the incorporation of the given velocity within the right-hand side, we assume in the derivations that the velocity field is solenoidal. Yet this assumption is not restrictive, as we can use non-divergence-free approximations and even compressible velocities. Numerical experiments confirm the optimal a priori error estimates for both methods considered.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"126 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Absorbing Boundary Layer for the Nonlinear Schrödinger Equation 非线性Schrödinger方程的自适应吸收边界层
4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-11-01 DOI: 10.1515/cmam-2023-0096
Hans Peter Stimming, Xin Wen, Norbert J. Mauser
{"title":"Adaptive Absorbing Boundary Layer for the Nonlinear Schrödinger Equation","authors":"Hans Peter Stimming, Xin Wen, Norbert J. Mauser","doi":"10.1515/cmam-2023-0096","DOIUrl":"https://doi.org/10.1515/cmam-2023-0096","url":null,"abstract":"Abstract We present an adaptive absorbing boundary layer technique for the nonlinear Schrödinger equation that is used in combination with the Time-splitting Fourier spectral method (TSSP) as the discretization for the NLS equations. We propose a new complex absorbing potential (CAP) function based on high order polynomials, with the major improvement that an explicit formula for the coefficients in the potential function is employed for adaptive parameter selection. This formula is obtained by an extension of the analysis in [R. Kosloff and D. Kosloff, Absorbing boundaries for wave propagation problems, J. Comput. Phys. 63 1986, 2, 363–376]. We also show that our imaginary potential function is more efficient than what is used in the literature. Numerical examples show that our ansatz is significantly better than existing approaches. We show that our approach can very accurately compute the solutions of the NLS equations in one dimension, including in the case of multi-dominant wave number solutions.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"52 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135161159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Conforming Virtual Element Method for Parabolic Integro-Differential Equations 抛物型积分-微分方程的一致虚元法
4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-10-11 DOI: 10.1515/cmam-2023-0061
Sangita Yadav, Meghana Suthar, Sarvesh Kumar
{"title":"A Conforming Virtual Element Method for Parabolic Integro-Differential Equations","authors":"Sangita Yadav, Meghana Suthar, Sarvesh Kumar","doi":"10.1515/cmam-2023-0061","DOIUrl":"https://doi.org/10.1515/cmam-2023-0061","url":null,"abstract":"Abstract This article develops and analyses a conforming virtual element scheme for the spatial discretization of parabolic integro-differential equations combined with backward Euler’s scheme for temporal discretization. With the help of Ritz–Voltera and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> L^{2} projection operators, optimal a priori error estimates are established. Moreover, several numerical experiments are presented to confirm the computational efficiency of the proposed scheme and validate the theoretical findings.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136059360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Time Splitting Method for the Three-Dimensional Linear Pauli Equation 三维线性泡利方程的时间分裂方法
4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-10-06 DOI: 10.1515/cmam-2023-0094
Timon S. Gutleb, Norbert J. Mauser, Michele Ruggeri, Hans Peter Stimming
{"title":"A Time Splitting Method for the Three-Dimensional Linear Pauli Equation","authors":"Timon S. Gutleb, Norbert J. Mauser, Michele Ruggeri, Hans Peter Stimming","doi":"10.1515/cmam-2023-0094","DOIUrl":"https://doi.org/10.1515/cmam-2023-0094","url":null,"abstract":"Abstract We analyze a numerical method to solve the time-dependent linear Pauli equation in three space dimensions. The Pauli equation is a semi-relativistic generalization of the Schrödinger equation for 2-spinors which accounts both for magnetic fields and for spin, with the latter missing in preceding numerical work on the linear magnetic Schrödinger equation. We use a four term operator splitting in time, prove stability and convergence of the method and derive error estimates as well as meshing strategies for the case of given time-independent electromagnetic potentials, thus providing a generalization of previous results for the magnetic Schrödinger equation.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence of the Incremental Projection Method Using Conforming Approximations 使用一致性逼近的增量投影法的收敛性
4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-10-05 DOI: 10.1515/cmam-2023-0038
Robert Eymard, David Maltese
{"title":"Convergence of the Incremental Projection Method Using Conforming Approximations","authors":"Robert Eymard, David Maltese","doi":"10.1515/cmam-2023-0038","DOIUrl":"https://doi.org/10.1515/cmam-2023-0038","url":null,"abstract":"Abstract We prove the convergence of an incremental projection numerical scheme for the time-dependent incompressible Navier–Stokes equations, without any regularity assumption on the weak solution. The velocity and the pressure are discretized in conforming spaces, whose compatibility is ensured by the existence of an interpolator for regular functions which preserves approximate divergence-free properties. Owing to a priori estimates, we get the existence and uniqueness of the discrete approximation. Compactness properties are then proved, relying on a Lions-like lemma for time translate estimates. It is then possible to show the convergence of the approximate solution to a weak solution of the problem. The construction of the interpolator is detailed in the case of the lowest degree Taylor–Hood finite element.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134946895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three Low Order H-Curl-Curl Finite Elements on Triangular Meshes 三角网格上的三阶h -旋度有限元
4区 数学
Computational Methods in Applied Mathematics Pub Date : 2023-10-04 DOI: 10.1515/cmam-2023-0140
Shangyou Zhang
{"title":"Three Low Order H-Curl-Curl Finite Elements on Triangular Meshes","authors":"Shangyou Zhang","doi":"10.1515/cmam-2023-0140","DOIUrl":"https://doi.org/10.1515/cmam-2023-0140","url":null,"abstract":"Abstract We construct three H-curl-curl finite elements. The <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>P</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> P_{2} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>P</m:mi> <m:mn>3</m:mn> </m:msub> </m:math> P_{3} vector finite element spaces are both enriched by one common <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>P</m:mi> <m:mn>4</m:mn> </m:msub> </m:math> P_{4} bubble and their local degrees of freedom are 13 and 21, respectively. As there does not exist any <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>P</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> P_{1} H-curl-curl conforming finite element, the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>P</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> P_{1} H-curl-curl nonconforming finite element is constructed with three additional <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>P</m:mi> <m:mn>4</m:mn> </m:msub> </m:math> P_{4} bubbles. Numerical tests are presented, confirming the conformity and the optimal order of convergence.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"178 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135549132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信