Adaptive Image Compression via Optimal Mesh Refinement

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Michael Feischl, Hubert Hackl
{"title":"Adaptive Image Compression via Optimal Mesh Refinement","authors":"Michael Feischl, Hubert Hackl","doi":"10.1515/cmam-2023-0097","DOIUrl":null,"url":null,"abstract":"The JPEG algorithm is a defacto standard for image compression. We investigate whether adaptive mesh refinement can be used to optimize the compression ratio and propose a new adaptive image compression algorithm. We prove that it produces a quasi-optimal subdivision grid for a given error norm with high probability. This subdivision can be stored with very little overhead and thus leads to an efficient compression algorithm. We demonstrate experimentally, that the new algorithm can achieve better compression ratios than standard JPEG compression with no visible loss of quality on many images. The mathematical core of this work shows that Binev’s optimal tree approximation algorithm is applicable to image compression with high probability, when we assume small additive Gaussian noise on the pixels of the image.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0097","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The JPEG algorithm is a defacto standard for image compression. We investigate whether adaptive mesh refinement can be used to optimize the compression ratio and propose a new adaptive image compression algorithm. We prove that it produces a quasi-optimal subdivision grid for a given error norm with high probability. This subdivision can be stored with very little overhead and thus leads to an efficient compression algorithm. We demonstrate experimentally, that the new algorithm can achieve better compression ratios than standard JPEG compression with no visible loss of quality on many images. The mathematical core of this work shows that Binev’s optimal tree approximation algorithm is applicable to image compression with high probability, when we assume small additive Gaussian noise on the pixels of the image.
通过优化网格细化实现自适应图像压缩
JPEG 算法是图像压缩的事实标准。我们研究了自适应网格细化是否可用于优化压缩比,并提出了一种新的自适应图像压缩算法。我们证明,对于给定的误差规范,它能高概率地生成准最优细分网格。这种细分网格的存储开销极小,因此是一种高效的压缩算法。我们通过实验证明,新算法可以实现比标准 JPEG 压缩更好的压缩率,而且在许多图像上没有明显的质量损失。这项工作的数学核心表明,当我们假定图像像素上的加性高斯噪声很小时,Binev 的最优树近似算法适用于高概率图像压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信