{"title":"DCZ0014, a novel compound in the therapy of diffuse large B-cell lymphoma via the B cell receptor signaling pathway.","authors":"Shuaikang Chang, Bo Li, Yongsheng Xie, Yingcong Wang, Zhijian Xu, Shuhan Jin, D. Yu, Huaping Wang, Yumeng Lu, Yong Zhang, Ruye Ma, Cheng Huang, Weiming Lai, Xiaosong Wu, Weiliang Zhu, Jumei Shi","doi":"10.21203/rs.3.rs-48447/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-48447/v1","url":null,"abstract":"Diffuse large B cell lymphoma (DLBCL) is a clinical and genetically heterogeneous lymphoid malignancy. Although R-CHOP (rituximab plus cyclophosphamide, vincristine, doxorubicin, and prednisone) treatment can improve the survival rate of patients with DLBCL, more than 30% of patients exhibit treatment failure, relapse, or refractory disease. Therefore, novel drugs or targeted therapies are needed to improve the survival of patients with DLBCL. The compound DCZ0014 is a novel chemical similar to berberine. In this study, we found that DCZ0014 significantly inhibited the proliferation and activity of DLBCL cells, and induced cell apoptosis. Following treatment with DCZ0014, DLBCL cells accumulated in G0/G1-phase of the cell cycle and showed decreased mitochondrial membrane potential. Additionally, DCZ0014 inhibited DNA synthesis, enhanced DNA damage in DLBCL cells, as well as inhibited Lyn/Syk in B cell receptor signaling pathway. Further experiments demonstrated that DCZ0014 did not significantly affect peripheral blood mononuclear cells. Tumor xenograft model showed that DCZ0014 not only inhibited tumor growth but also extended the survival time of mice. Thus, DCZ0014 showed potential for clinical application in the treatment of patients with DLBCL.","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"212 7","pages":"50-61"},"PeriodicalIF":4.8,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72436607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2018-01-28DOI: 10.1016/J.NEO.2017.11.008
J. Gibcus, L. Tan, G. Harms, R. Schakel, D. de Jong, T. Blokzijl, P. Möller, S. Poppema, B. Kroesen, A. van den Berg
{"title":"Corrigendum to \"Hodgkin Lymphoma Cell Lines Are Characterized by a Specific miRNA Expression Profile.\" Neoplasia 2009, Feb;11(2):167-176.","authors":"J. Gibcus, L. Tan, G. Harms, R. Schakel, D. de Jong, T. Blokzijl, P. Möller, S. Poppema, B. Kroesen, A. van den Berg","doi":"10.1016/J.NEO.2017.11.008","DOIUrl":"https://doi.org/10.1016/J.NEO.2017.11.008","url":null,"abstract":"","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"11 1","pages":"226"},"PeriodicalIF":4.8,"publicationDate":"2018-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74400869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2012-04-15DOI: 10.1158/1538-7445.AM2012-3745
B. Mukherjee, N. Tomimatsu, K. Amancherla, Cristel V. Camacho, N. Pichamoorthy, S. Burma
{"title":"The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM- and DNA-PKCs-mediated DNA damage responses.","authors":"B. Mukherjee, N. Tomimatsu, K. Amancherla, Cristel V. Camacho, N. Pichamoorthy, S. Burma","doi":"10.1158/1538-7445.AM2012-3745","DOIUrl":"https://doi.org/10.1158/1538-7445.AM2012-3745","url":null,"abstract":"Inhibitors of PI3K/Akt signaling are being actively developed for tumor therapy owing to the frequent mutational activation of the PI3K-Akt-mTORC1 pathway in many cancers, including glioblastomas (GBMs). NVP-BEZ235 is a novel and potent dual PI3K/mTOR inhibitor that is currently in phase 1/2 clinical trials for advanced solid tumors. Here, we show that NVP-BEZ235 also potently inhibits ATM and DNA-PKcs, the two major kinases responding to ionizing radiation (IR)-induced DNA double-strand breaks (DSBs). Consequently, NVP-BEZ235 blocks both nonhomologous end joining and homologous recombination DNA repair pathways resulting in significant attenuation of DSB repair. In addition, phosphorylation of ATMtargets and implementation of the G(2)/M cell cycle checkpoint are also attenuated by this drug. As a result, NVP-BEZ235 confers an extreme degree of radiosensitization and impairs DSB repair in a panel of GBM cell lines irrespective of their Akt activation status. NVP-BEZ235 also significantly impairs DSB repair in a mouse tumor model thereby validating the efficacy of this drug as a DNA repair inhibitor in vivo. Our results, showing that NVP-BEZ235 is a potent and novel inhibitor of ATM and DNA-PKcs, have important implications for the informed and rational design of clinical trials involving this drug and also reveal the potential utility of NVP-BEZ235 as an effective radiosensitizer for GBMs in the clinic.","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"14 1","pages":"34-43"},"PeriodicalIF":4.8,"publicationDate":"2012-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88970982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2010-04-15DOI: 10.1158/1538-7445.AM10-3428
Sun-jin Kim, Jang‐Seong Kim, E. Park, Ju-Seog Lee, Qingtang Lin, R. Langley, Marva Maya, Junqin He, S. Kim, Weihua Zhang, K. Balasubramanian, D. Fan, G. Mills, M. Hung, I. Fidler
{"title":"Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy.","authors":"Sun-jin Kim, Jang‐Seong Kim, E. Park, Ju-Seog Lee, Qingtang Lin, R. Langley, Marva Maya, Junqin He, S. Kim, Weihua Zhang, K. Balasubramanian, D. Fan, G. Mills, M. Hung, I. Fidler","doi":"10.1158/1538-7445.AM10-3428","DOIUrl":"https://doi.org/10.1158/1538-7445.AM10-3428","url":null,"abstract":"In the United States, more than 40% of cancer patients develop brain metastasis. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with conventional radiotherapy and chemotherapy. The growth and survival of metastasis depend on the interaction of tumor cells with host factors in the organ microenvironment. Brain metastases are surrounded and infiltrated by activated astrocytes and are highly resistant to chemotherapy. We report here that coculture of human breast cancer cells or lung cancer cells with murine astrocytes (but not murine fibroblasts) led to the up-regulation of survival genes, including GSTA5, BCL2L1, and TWIST1, in the tumor cells. The degree of up-regulation directly correlated with increased resistance to all tested chemotherapeutic agents. We further show that the up-regulation of the survival genes and consequent resistance are dependent on the direct contact between the astrocytes and tumor cells through gap junctions and are therefore transient. Knocking down these genes with specific small interfering RNA rendered the tumor cells sensitive to chemotherapeutic agents. These data clearly demonstrate that host cells in the microenvironment influence the biologic behavior of tumor cells and reinforce the contention that the organ microenvironment must be taken into consideration during the design of therapy.","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"34 1","pages":"286-98"},"PeriodicalIF":4.8,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74009150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2010-04-15DOI: 10.1158/1538-7445.AM10-LB-179
Huajun Zhao, F. Ou-Yang, I. Chen, M. Hou, S. Yuan, Hsueh-Ling Chang, Yi-Chen Lee, R. Plattner, S. Waltz, S. Ho, J. Sims, Shao-Chun Wang
{"title":"Enhanced resistance to tamoxifen by the c-ABL proto-oncogene in breast cancer.","authors":"Huajun Zhao, F. Ou-Yang, I. Chen, M. Hou, S. Yuan, Hsueh-Ling Chang, Yi-Chen Lee, R. Plattner, S. Waltz, S. Ho, J. Sims, Shao-Chun Wang","doi":"10.1158/1538-7445.AM10-LB-179","DOIUrl":"https://doi.org/10.1158/1538-7445.AM10-LB-179","url":null,"abstract":"Targeting the estrogen receptor is an important strategy in breast cancer therapy. However, although inhibiting estrogen receptor function with specific estrogen receptor modulators can achieve a primary response in cancer patients, intrinsic or subsequently acquired resistance to the therapy remains a major obstacle in the clinic. Thus, it is critical to gain a more thorough understanding of how estrogen receptor functions are regulated in breast cancer.Here, we demonstrate that the non-receptor tyrosine kinase c-ABL is a functional partner of the estrogen receptor, as expression of c-ABL sustained transcriptional activity of the estrogen receptor. More importantly, inhibition of c-ABL resulted in sensitization to treatment by tamoxifen (TAM) in estrogen receptor-positive breast cancer cells, as manifested by inhibition of cell survival and suppression of anchorage-independent growth. We found that c-ABL interacts with estrogen receptor in breast cancer cells and that expression of c-ABL is a frequent event in primary breast cancer tumor tissues. In estrogen receptor-positive tumors, the expression of c-ABL significantly correlated with disease progression and metastasis. This study shows that c-ABL regulates the cellular response to TAM through functional interaction with the estrogen receptor, which suggests c-ABL as a therapeutic target and a prognostic tumor marker for breast cancer.","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"1 1","pages":"214-23"},"PeriodicalIF":4.8,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80715255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2008-09-17DOI: 10.1055/S-0028-1089530
L. Grochola, T. Greither, H. Taubert, P. Möller, U. Knippschild, A. Udelnow, D. Henne-Bruns, P. Würl
{"title":"Prognostic relevance of hTERT mRNA expression in ductal adenocarcinoma of the pancreas.","authors":"L. Grochola, T. Greither, H. Taubert, P. Möller, U. Knippschild, A. Udelnow, D. Henne-Bruns, P. Würl","doi":"10.1055/S-0028-1089530","DOIUrl":"https://doi.org/10.1055/S-0028-1089530","url":null,"abstract":"Telomerase is thought to play an essential role in tumorigenesis and progression. Its activity is directly correlated with the expression of its catalytic subunit, human telomerase reverse transcriptase (hTERT). A correlation of transcript expression with a poor prognosis has been detected in different human malignancies. However, data on hTERT in pancreatic ductal adenocarcinoma (PDAC) are purely descriptive so far. Therefore, we evaluated the impact of hTERT expression on patients' prognosis. Human telomerase reverse transcriptase mRNA isolates from 56 human microdissected PDAC tissues were analyzed by quantitative reverse transcription-polymerase chain reaction and multivariate Cox regression hazard test. Elevated hTERT transcript levels were measured in 23 of 56 PDAC tissues, 33 patients showed no detectable transcripts. Unexpectedly, a low expression of hTERT mRNA levels was associated with a worse prognosis for overall survival (relative risk = 5.33; P = .013) when compared to high levels, whereas undetectable expression showed an intermediate risk of tumor-related death. These data challenge previous findings outlining hTERT's negative impact on overall survival. The risk pattern obtained in PDAC suggests a more complex regulation of hTERT.","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"27 1","pages":"973-6"},"PeriodicalIF":4.8,"publicationDate":"2008-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87333941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2007-03-01DOI: 10.1016/S1569-9056(08)60821-0
R. Kuefer, F. Genze, Waltraud Zugmaier, R. Hautmann, L. Rinnab, J. Gschwend, Marina Angelmeier, A. Estrada, B. Buechele
{"title":"Antagonistic effects of sodium butyrate and N-(4-hydroxyphenyl)-retinamide on prostate cancer.","authors":"R. Kuefer, F. Genze, Waltraud Zugmaier, R. Hautmann, L. Rinnab, J. Gschwend, Marina Angelmeier, A. Estrada, B. Buechele","doi":"10.1016/S1569-9056(08)60821-0","DOIUrl":"https://doi.org/10.1016/S1569-9056(08)60821-0","url":null,"abstract":"","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"39 1","pages":"246-53"},"PeriodicalIF":4.8,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74578350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2006-12-01DOI: 10.1593/NEO.08EDI
A. Rehemtulla
{"title":"Neoplasia: Where We Have Been and Where We Are Going","authors":"A. Rehemtulla","doi":"10.1593/NEO.08EDI","DOIUrl":"https://doi.org/10.1593/NEO.08EDI","url":null,"abstract":"Neoplasia was launched in 1999 with the mission of providing a high-quality publication venue for the rapid dissemination of novel and exciting advances in cancer research. The journal has grown, in a very rapid fashion, from a bimonthly publication to a monthly publication by publishing a broad-based range of articles ranging from apoptosis to angiogenesis, as shown in Table 1. This table categorizes articles published by Neoplasia by general topic for publication years 2004 to 2006. Cancer genetics, cell and tumor biology, experimental therapeutics, and cancer imaging continue to be significant components of article growth published over these years. The number of submissions and published articles has continually increased over the year, and, next year, Neoplasia will enter its ninth year of publication (Vol. 9). The success of Neoplasia has affirmed to the editorial staff and editorial board that there was and continues to be a significant need for a broad-based cancer journal. During the past year, Neoplasia has further adapted and taken the lead in online peer-reviewed publication of cancer research articles. \u0000 \u0000 \u0000 \u0000Table 1 \u0000 \u0000Major Research Topics Published in Neoplasia from 2004 to 2006. \u0000 \u0000 \u0000 \u0000In 2006, Neoplasia adopted the open access (OA) model for all articles published. This allows for all articles to be made available free to the scientific and layman communities through online electronic access. All articles are linked through PubMed (www.PubMEd.gov) to a Web-based database, which hosts all Neoplasia articles published to date. Moreover, beginning in 2007, all Neoplasia articles published in Neoplasia will also be freely available through the Biomedcentral portal (http://www.biomedcentral.com/) beginning on the day of publication, rather than after 6 to 12 months like most journals. Of 8700 selected journals currently covered in Web of Science, only 160 are available through Biomedcentral. The effect of immediate OA on the impact of Neoplasia is anticipated to dramatically improve the citation impact factor in terms of the frequency with which an article is cited in the literature (http://dlib.org/dlib/june04/harnad/06harnad.html) [301]. Overall, OA will provide for dramatically increased readership due to access to articles, which would traditionally be unavailable due to costs associated with access tolls to the journal in which it was published because their affiliated institution could not afford the price of subscription. Overall, providing OA to all past, present, and future articles published in Neoplasia should significantly improve the quality and speed at which cancer research advances will be made due to more rapid dissemination of knowledge. \u0000 \u0000Neoplasia is committed to meeting the challenges and emerging needs of the cancer research scientific community. This commitment has been met through the early establishment of a rapid online peer-review system, which has facilitated review of submitted articles. Moreover, the re","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"126 1","pages":"975-983"},"PeriodicalIF":4.8,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88166866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2006-09-01DOI: 10.1016/S1569-9056(06)61294-3
T. Bismar, F. Demichelis, A. Riva, R. Kim, S. Varambally, Le He, J. Kutok, J. Aster, Jeffery Tang, R. Kuefer, M. Hofer, P. Febbo, A. Chinnaiyan, M. Rubin
{"title":"Defining aggressive prostate cancer using a 12-gene model.","authors":"T. Bismar, F. Demichelis, A. Riva, R. Kim, S. Varambally, Le He, J. Kutok, J. Aster, Jeffery Tang, R. Kuefer, M. Hofer, P. Febbo, A. Chinnaiyan, M. Rubin","doi":"10.1016/S1569-9056(06)61294-3","DOIUrl":"https://doi.org/10.1016/S1569-9056(06)61294-3","url":null,"abstract":"","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"3 1","pages":"59-68"},"PeriodicalIF":4.8,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83324252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeoplasiaPub Date : 2006-07-01DOI: 10.1097/00008390-200609001-00122
J. Reiland, D. Kempf, M. Roy, Y. Denkins, D. Marchetti
{"title":"FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells.","authors":"J. Reiland, D. Kempf, M. Roy, Y. Denkins, D. Marchetti","doi":"10.1097/00008390-200609001-00122","DOIUrl":"https://doi.org/10.1097/00008390-200609001-00122","url":null,"abstract":"Heparanase (HPSE) and fibroblast growth factor-2 (FGF2) are critical regulators of melanoma angiogenesis and metastasis. Elevated HPSE expression contributes to melanoma progression; however, further augmentation of HPSE presence can inhibit tumorigenicity. HPSE enzymatically cleaves heparan sulfate glycosaminoglycan chains (HS) from proteoglycans. HS act as both low-affinity FGF2 receptors and coreceptors in the formation of high-affinity FGF2 receptors. We have investigated HPSE's ability to modulate FGF2 activity through HS remodeling. Extensive HPSE degradation of human metastatic melanoma cells (70W) inhibited FGF2 binding. Unexpectedly, treatment of 70W cells with low HPSE concentrations enhanced FGF2 binding. In addition, HPSE-unexposed cells did not phosphorylate extracellular signal-related kinase (ERK) or focal adhesion kinase (FAK) in response to FGF2. Conversely, in cells treated with HPSE, FGF2 stimulated ERK and FAK phosphorylation. Secondly, the presence of soluble HPSE-degraded HS enhanced FGF2 binding and ERK phosphorylation at low HS concentrations. Higher concentrations of soluble HS inhibited FGF2 binding, but FGF2 signaling through ERK remained enhanced. Soluble HS were unable to support FGF2-stimulated FAK phosphorylation irrespective of HPSE treatment. Finally, cell exposure to HPSE or to HPSE-degraded HS modulated FGF2-induced angiogenesis in melanoma. In conclusion, these effects suggest relevant mechanisms for the HPSE modulation of melanoma growth factor responsiveness and tumorigenicity.","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"2 1","pages":"596-606"},"PeriodicalIF":4.8,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79422870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}