口腔鳞状细胞癌的多模态分析确定了与槟榔液咀嚼相关的基因组改变和表达程序。

IF 7.7 2区 医学 Q1 ONCOLOGY
Neoplasia Pub Date : 2025-10-01 Epub Date: 2025-08-09 DOI:10.1016/j.neo.2025.101218
Shih-Chi Su, Chiao-Wen Lin, Mu-Kuan Chen, Yi-Chan Lee, Chun-Wen Su, Shi Bai, Hansraj Jangir, Chun-Yi Chuang, Wen-Hung Chung, Lun-Ching Chang, Shun-Fa Yang
{"title":"口腔鳞状细胞癌的多模态分析确定了与槟榔液咀嚼相关的基因组改变和表达程序。","authors":"Shih-Chi Su, Chiao-Wen Lin, Mu-Kuan Chen, Yi-Chan Lee, Chun-Wen Su, Shi Bai, Hansraj Jangir, Chun-Yi Chuang, Wen-Hung Chung, Lun-Ching Chang, Shun-Fa Yang","doi":"10.1016/j.neo.2025.101218","DOIUrl":null,"url":null,"abstract":"<p><p>Betel quid (BQ) chewing is a profound risk for oral squamous cell carcinoma (OSCC) in Southeast Asia. Yet, the detailed mechanisms by which BQ chewing damages the genome and creates a unique tumor niche that ultimately cause OSCC are still not fully understood. To address this, we conducted a multi-omics survey, including exome sequencing of tumor-normal pairs from 261 male patients with OSCC (129 habitual BQ chewers and 132 non-BQ users), alone with integrated single-cell and spatial transcriptomics of a set of tumors. Comparative analyses of the mutational catalog identified enrichment of significantly altered genes (e.g. mutations of TP53 and CHUK, copy gains of MAP3K13 and FADD, copy losses of CDKN2A) associated with BQ chewing. Assessment of oncogenic and co-occurring actionable alterations demonstrated frequently altered oncogenic pathways (Hippo and p53 signaling) and potential combination therapy opportunities linked to BQ use. In addition, evaluation of epithelial, immune, stromal expression programs in the corresponding tissue compartments revealed a shift of tumor microenvironment in BQ-related OSCC, characterized by induced hypoxia of tumor epithelium, altered immunosuppression of dendritic cells, and raised sprouting angiogenesis of tumor endothelium. Quantitative predictions of intercellular communications inferred a more heterogeneous cell-cell crosstalk among BQ-related OSCC, highlighted by extensive interactions of fibroblasts and dendritic cells with other non-epithelial cell types via mostly extracellular matrix-receptor signaling pathways. Collectively, these differences in genomic landscape and tumor niche suggest that OSCC caused by BQ chewing could be an etiological subtype different from their BQ-negative counterparts.</p>","PeriodicalId":48716,"journal":{"name":"Neoplasia","volume":"68 ","pages":"101218"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal profiling of oral squamous cell carcinoma identifies genomic alterations and expression programs associated with betel quid chewing.\",\"authors\":\"Shih-Chi Su, Chiao-Wen Lin, Mu-Kuan Chen, Yi-Chan Lee, Chun-Wen Su, Shi Bai, Hansraj Jangir, Chun-Yi Chuang, Wen-Hung Chung, Lun-Ching Chang, Shun-Fa Yang\",\"doi\":\"10.1016/j.neo.2025.101218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Betel quid (BQ) chewing is a profound risk for oral squamous cell carcinoma (OSCC) in Southeast Asia. Yet, the detailed mechanisms by which BQ chewing damages the genome and creates a unique tumor niche that ultimately cause OSCC are still not fully understood. To address this, we conducted a multi-omics survey, including exome sequencing of tumor-normal pairs from 261 male patients with OSCC (129 habitual BQ chewers and 132 non-BQ users), alone with integrated single-cell and spatial transcriptomics of a set of tumors. Comparative analyses of the mutational catalog identified enrichment of significantly altered genes (e.g. mutations of TP53 and CHUK, copy gains of MAP3K13 and FADD, copy losses of CDKN2A) associated with BQ chewing. Assessment of oncogenic and co-occurring actionable alterations demonstrated frequently altered oncogenic pathways (Hippo and p53 signaling) and potential combination therapy opportunities linked to BQ use. In addition, evaluation of epithelial, immune, stromal expression programs in the corresponding tissue compartments revealed a shift of tumor microenvironment in BQ-related OSCC, characterized by induced hypoxia of tumor epithelium, altered immunosuppression of dendritic cells, and raised sprouting angiogenesis of tumor endothelium. Quantitative predictions of intercellular communications inferred a more heterogeneous cell-cell crosstalk among BQ-related OSCC, highlighted by extensive interactions of fibroblasts and dendritic cells with other non-epithelial cell types via mostly extracellular matrix-receptor signaling pathways. Collectively, these differences in genomic landscape and tumor niche suggest that OSCC caused by BQ chewing could be an etiological subtype different from their BQ-negative counterparts.</p>\",\"PeriodicalId\":48716,\"journal\":{\"name\":\"Neoplasia\",\"volume\":\"68 \",\"pages\":\"101218\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neo.2025.101218\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neo.2025.101218","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

槟榔液(BQ)咀嚼是东南亚口腔鳞状细胞癌(OSCC)的一个深刻的风险。然而,BQ咀嚼损害基因组并产生最终导致OSCC的独特肿瘤生态位的详细机制仍未完全了解。为了解决这个问题,我们进行了一项多组学调查,包括对来自261名男性OSCC患者(129名习惯性BQ咀嚼者和132名非BQ使用者)的肿瘤-正常对的外显性组测序,以及一组肿瘤的综合单细胞和空间转录组学。通过对突变目录的比较分析,发现了与BQ咀嚼相关的显著改变基因(如TP53和CHUK突变,MAP3K13和FADD拷贝增加,CDKN2A拷贝丢失)的富集。对致癌和共同发生的可操作改变的评估表明,经常改变的致癌途径(Hippo和p53信号)和潜在的联合治疗机会与BQ的使用有关。此外,对相应组织室中上皮、免疫和间质表达程序的评估显示,bq相关的OSCC中肿瘤微环境发生了变化,其特征是肿瘤上皮缺氧诱导,树突状细胞免疫抑制改变,肿瘤内皮新生血管生成增加。细胞间通讯的定量预测推断bq相关OSCC之间存在更异质性的细胞间串音,突出表现为成纤维细胞和树突状细胞与其他非上皮细胞类型通过细胞外基质受体信号通路进行广泛的相互作用。总的来说,这些基因组景观和肿瘤生态位的差异表明,咀嚼BQ引起的OSCC可能是一种病因亚型,不同于BQ阴性的OSCC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal profiling of oral squamous cell carcinoma identifies genomic alterations and expression programs associated with betel quid chewing.

Betel quid (BQ) chewing is a profound risk for oral squamous cell carcinoma (OSCC) in Southeast Asia. Yet, the detailed mechanisms by which BQ chewing damages the genome and creates a unique tumor niche that ultimately cause OSCC are still not fully understood. To address this, we conducted a multi-omics survey, including exome sequencing of tumor-normal pairs from 261 male patients with OSCC (129 habitual BQ chewers and 132 non-BQ users), alone with integrated single-cell and spatial transcriptomics of a set of tumors. Comparative analyses of the mutational catalog identified enrichment of significantly altered genes (e.g. mutations of TP53 and CHUK, copy gains of MAP3K13 and FADD, copy losses of CDKN2A) associated with BQ chewing. Assessment of oncogenic and co-occurring actionable alterations demonstrated frequently altered oncogenic pathways (Hippo and p53 signaling) and potential combination therapy opportunities linked to BQ use. In addition, evaluation of epithelial, immune, stromal expression programs in the corresponding tissue compartments revealed a shift of tumor microenvironment in BQ-related OSCC, characterized by induced hypoxia of tumor epithelium, altered immunosuppression of dendritic cells, and raised sprouting angiogenesis of tumor endothelium. Quantitative predictions of intercellular communications inferred a more heterogeneous cell-cell crosstalk among BQ-related OSCC, highlighted by extensive interactions of fibroblasts and dendritic cells with other non-epithelial cell types via mostly extracellular matrix-receptor signaling pathways. Collectively, these differences in genomic landscape and tumor niche suggest that OSCC caused by BQ chewing could be an etiological subtype different from their BQ-negative counterparts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neoplasia
Neoplasia ONCOLOGY-
自引率
2.10%
发文量
82
期刊介绍: Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信