Open PhysicsPub Date : 2024-04-23DOI: 10.1515/phys-2024-0008
Abdul Hamid Ganie, Saima Noor, Maryam Al Huwayz, Ahmad Shafee, Samir A. El-Tantawy
{"title":"Numerical simulations for fractional Hirota–Satsuma coupled Korteweg–de Vries systems","authors":"Abdul Hamid Ganie, Saima Noor, Maryam Al Huwayz, Ahmad Shafee, Samir A. El-Tantawy","doi":"10.1515/phys-2024-0008","DOIUrl":"https://doi.org/10.1515/phys-2024-0008","url":null,"abstract":"In this investigation, the fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) problem is solved using two modern semi-analytic techniques known as the Aboodh residual power series method (ARPSM) and Aboodh transform iteration method (ATIM). The two suggested approaches are briefly explained, along with how to use them to solve the fractional Hirota–Satsuma coupled KdV problem. Some analytical approximate solutions for the current problem are derived using the proposed techniques until the second-order approximation. To ensure high accuracy of the derived approximation, they are analyzed numerically and graphically and compared with the exact solutions of the integer cases. The offered techniques demonstrate more accuracy in their outcomes compared to other alternatives. The numerical results show that ARPSM and ATIM are highly accurate, practical, and beneficial for solving nonlinear equation systems. The current results are expected to help many physics researchers in modeling their different physical problems, especially those interested in plasma physics.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-04-19DOI: 10.1515/phys-2024-0011
Gamal M. Ismail, Alwaleed Kamel, Abdulaziz Alsarrani
{"title":"Studying nonlinear vibration analysis of nanoelectro-mechanical resonators via analytical computational method","authors":"Gamal M. Ismail, Alwaleed Kamel, Abdulaziz Alsarrani","doi":"10.1515/phys-2024-0011","DOIUrl":"https://doi.org/10.1515/phys-2024-0011","url":null,"abstract":"Periodic behaviour analysis of nano/microelectromechanical systems (N/MEMS) is an important area due to its numerous prospective applications in micro instruments. The intriguing and unique qualities of these systems, notably their tiny size, batch manufacturing, low power consumption, and great dependability have piqued the attention of academics and enterprises in using these structures to manufacture various microdevices. This article presents the parameter expansion method (PEM) to obtain the approximate solutions of N/MEMS. The present approach, as well as its speed and simplicity in providing analytical solutions that converge quickly to the exact numerical ones, distinguishes this study. The PEM has the benefit of immediately providing analytical solutions to nonlinear differential equations while avoiding costly calculations. Furthermore, in terms of establishing numerous terms of semi-analytic solutions, this approach is very faster and superior to other established analytical techniques in the literature.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-04-18DOI: 10.1515/phys-2024-0014
Mahesh Attimarad, Katharigatta Narayanaswamy Venugopala, Anroop B. Nair, Bandar Aldhubiab, Sreeharsha Nagaraja
{"title":"In silico modified UV spectrophotometric approaches to resolve overlapped spectra for quality control of rosuvastatin and teneligliptin formulation","authors":"Mahesh Attimarad, Katharigatta Narayanaswamy Venugopala, Anroop B. Nair, Bandar Aldhubiab, Sreeharsha Nagaraja","doi":"10.1515/phys-2024-0014","DOIUrl":"https://doi.org/10.1515/phys-2024-0014","url":null,"abstract":"A binary blend of rosuvastatin (ROS) and teneligliptin (TEN) used for the management of cardiovascular complications require a simple, analytical process for the quality assurance of this formulation. UV absorption spectra of ROS and TEN showed overlapping spectra. Hence, the overlapped spectra of ROS and TEN were separated by ratio difference, ratio first derivative; constant extraction coupled with exponentiation with division spectrum, and induced dual-wavelength methods. The proposed methods were authenticated by following the international council for harmonization criteria. A good linear relationship was demonstrated by all four methods, in 2–15 and 2–30 µg/mL for ROS and TEN, respectively. The high percentage retrieval of 98.96–100.22 and 98.72–99.73% for ROS and TEN, respectively, with small relative error, assured the correctness of the techniques. The validated techniques were employed for concurrent evaluation of ROS and TEN from binary formulation and laboratory-prepared mixture. The standard addition process verified the reliability of the projected procedures. The developed methods showed same accuracy and precision when compared to the HPLC methods along with safer solvent. Finally, the environmental sustainability of the presented UV spectroscopic procedures was found to be better than the reported HPLC method. Hence, eco-friendly, simple, and accurate mathematically processed UV spectroscopic procedures can be employed for simultaneous quantification of ROS and TEN for routine quality control study.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-04-17DOI: 10.1515/phys-2024-0006
Nehad Ali Shah, Dumitru Vieru, Constantin Fetecau, Shalan Alkarni
{"title":"Exact solutions to vorticity of the fractional nonuniform Poiseuille flows","authors":"Nehad Ali Shah, Dumitru Vieru, Constantin Fetecau, Shalan Alkarni","doi":"10.1515/phys-2024-0006","DOIUrl":"https://doi.org/10.1515/phys-2024-0006","url":null,"abstract":"Closed-form expressions for the dimensionless velocity, shear stresses, and the flow vorticity fields corresponding to the isothermal unsteady Poiseuille flows of a fractional incompressible viscous fluid over an infinite flat plate are established. The fluid motion induced by a pressure gradient in the flow direction is also influenced by the flat plate that oscillates in its plane. The vorticity field is dependent on two spatial coordinate and time, and it is an arbitrary trigonometric polynomial in the horizontal coordinate. The exact solutions, obtained by generalized separation of variables and Laplace transform technique, are presented in terms of the Wright function and complementary error function of Gauss. Their advantage consists in the fact that the values of the fractional parameter can be chosen so that the predicted material properties by them to be in agreement with the corresponding experimental results. In addition, they describe motions for which the nontrivial shear stresses are influenced by history of the shear rates. It is found that the flow vorticity is stronger near the plate, but it could be attenuated in the case of fractional model.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-04-15DOI: 10.1515/phys-2023-0209
Obulesu Mopuri, Charankumar Ganteda, Sarah A. Alsalhi, Sami Ullah Khan, Aruna Ganjikunta, Vediyappan Govindan, Faris Alqurashi, Mohamed Kchaou
{"title":"Inclined surface mixed convection flow of viscous fluid with porous medium and Soret effects","authors":"Obulesu Mopuri, Charankumar Ganteda, Sarah A. Alsalhi, Sami Ullah Khan, Aruna Ganjikunta, Vediyappan Govindan, Faris Alqurashi, Mohamed Kchaou","doi":"10.1515/phys-2023-0209","DOIUrl":"https://doi.org/10.1515/phys-2023-0209","url":null,"abstract":"The combined heat and mass transfer phenomenon is a significant aspect of engineering and industrial processes. This phenomenon finds applications in various areas such as air conditioning, cooling and heating control of electronic devices, reactors, chemical systems, and emission processes. This research model focuses on the analysis of mixed convection flow of a viscous fluid with heat and mass transfer on an inclined surface with porous medium characteristics. The study also considers external heat transfer effects, radiation, Soret influence, and chemical reactions. A perturbation solution is derived in closed form, and the impact of various parameters on the thermal behavior is investigated. A comparative analysis of the heating and cooling regimes in plate flow is conducted, revealing a reduction in velocity in the heated plate regime with changes in the permeability parameter and an increase in concentration phase due to the Soret number.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-04-13DOI: 10.1515/phys-2024-0010
Shuguang Li, Muhammad Ijaz Khan, Shahid Ali, Sami Ullah Khan, Saja Abdulrahman Althobaiti, Ilyas Khan, Faris Alqurashi, Mohamed Kchaou
{"title":"Influence of variable fluid properties on mixed convective Darcy–Forchheimer flow relation over a surface with Soret and Dufour spectacle","authors":"Shuguang Li, Muhammad Ijaz Khan, Shahid Ali, Sami Ullah Khan, Saja Abdulrahman Althobaiti, Ilyas Khan, Faris Alqurashi, Mohamed Kchaou","doi":"10.1515/phys-2024-0010","DOIUrl":"https://doi.org/10.1515/phys-2024-0010","url":null,"abstract":"The thermo-diffusion applications of nanofluid subject to variable thermal sources have been presented. The significance of Darcy–Forchheimer effects is attributed. The flow comprises the mixed convection and viscous dissipation effects. Furthermore, the variable influence of viscosity, thermal conductivity, and mass diffusivity is treated to analyze the flow. The analysis of problem is referred to convective mass and thermal constraints. The analytical simulations are proceeded with homotopy analysis method. The convergence region is highlighted. Novel physical contribution of parameters is visualized and treated graphically. It is noted that larger Brinkman number leads to improvement in heat transfer. The concentration pattern boosted due to Soret number. The wall shear force enhances with Hartmann number and variable thermal conductivity coefficient.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-04-11DOI: 10.1515/phys-2024-0004
Arezu Jahanshir, Ekwevugbe Omugbe, Joseph Ngene Aniezi, Ifeanyi Jude Njoku, Clement Atachegbe Onate, Edwin Samson Eyube, Samuel Olugbade Ogundeji, Chinonso Mbamara, Raphael Mmaduka Obodo, Michael Chukwudi Onyeaju
{"title":"Heavy mesons mass spectroscopy under a spin-dependent Cornell potential within the framework of the spinless Salpeter equation","authors":"Arezu Jahanshir, Ekwevugbe Omugbe, Joseph Ngene Aniezi, Ifeanyi Jude Njoku, Clement Atachegbe Onate, Edwin Samson Eyube, Samuel Olugbade Ogundeji, Chinonso Mbamara, Raphael Mmaduka Obodo, Michael Chukwudi Onyeaju","doi":"10.1515/phys-2024-0004","DOIUrl":"https://doi.org/10.1515/phys-2024-0004","url":null,"abstract":"The energy bound-state solutions of the spinless Salpeter equation (SSE) have been obtained under a spin-dependent Cornell potential function <jats:italic>via</jats:italic> the Wentzel–Kramers–Brillouin approximation. The energy levels were applied to predict the mass spectra for the charmonium, bottomonium, and bottom-charmed mesons. The relativistic corrections for the angular momentum quantum number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0004_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>l</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>lgt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, total angular momentum quantum numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0004_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mi>l</m:mi> <m:mo>,</m:mo> <m:mspace width=\".3em\" /> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mi>l</m:mi> <m:mo>±</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>j=l,hspace{.3em}j=lpm 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the radial quantum numbers <jats:italic>n</jats:italic> = 1–4 improve the mass spectra. The results agree fairly with experimental data and theoretic results reported in existing works, where the authors utilized different forms of the inter-quark potentials and methods. The deviation of the obtained masses for the charmonium and bottomonium from the observed data yields a total percentage error of 3.32 and 1.11%, respectively. The results indicate that the accuracy of the masses is correlated with the magnitude of masses for the charm and bottom quarks. The SSE together with the phenomenological spin-dependent Cornell potential provides an adequate account of the mass spectroscopy for the heavy mesons and may be used to predict other spectroscopic parameters.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A two-stage framework for predicting the remaining useful life of bearings","authors":"Xianbiao Zhan, Zixuan Liu, Hao Yan, Zhenghao Wu, Chiming Guo, Xisheng Jia","doi":"10.1515/phys-2023-0187","DOIUrl":"https://doi.org/10.1515/phys-2023-0187","url":null,"abstract":"The traditional prediction of remaining useful life (RUL) for bearings cannot be calculated in parallel and requires manual feature extraction and artificial label construction. Therefore, this article proposes a two-stage framework for predicting the RUL of bearings. In the first stage, an unsupervised approach using a temporal convolutional network (TCN) is employed to construct a health indicator (HI). This helps reduce human interference and the reliance on expert knowledge. In the second stage, a prediction framework based on a convolutional neural network (CNN)–transformer is developed to address the limitations of traditional neural networks, specifically their inability to perform parallel calculations and their low prediction accuracy. The life prediction framework primarily maps the complete life data of bearings onto the HI vector. Based on the HI constructed through TCN, the known HI is input into the CNN–transformer network, which sequentially predicts the remaining unknown HI. Finally, the effectiveness and superiority of the proposed method are verified using two bearing datasets, providing validation of its capabilities.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-04-04DOI: 10.1515/phys-2023-0194
Jing Chen, Aileen Tian, Ding Chen, Meng Guo, Dan He, Yuwen Liu
{"title":"Super-resolution reconstruction method of the optical synthetic aperture image using generative adversarial network","authors":"Jing Chen, Aileen Tian, Ding Chen, Meng Guo, Dan He, Yuwen Liu","doi":"10.1515/phys-2023-0194","DOIUrl":"https://doi.org/10.1515/phys-2023-0194","url":null,"abstract":"In order to solve the contradiction between large aperture elements and high-resolution images, in this study, we propose an improved image-resolution method based on generative adversarial network (GAN). First, we analyze the imaging principle of the optical synthetic aperture. Further, we improve a super-resolution GAN; especially, this network uses a multi-scale convolutional cascade to obtain global features of the image, and a multi-scale receptive field block and residual in residual dense block are built to obtain image details. In addition, this study uses the Mish function as the activation function of the discriminator to solve the problems of neuron extreme, gradient explosion, and poor generalization ability of the model. Through simulation, the results show that the proposed method can achieve a peak signal-to-noise ratio (PSNR) of 30 dB compared with traditional image super-resolution reconstruction methods for synthetic aperture image. The method proposed has an improvement of 2 dB in the PSNR and 0.016 in structure similarity index measure compared with the original super-resolution GAN. Therefore, this method can effectively reduce the image distortion and improve the quality of image reconstruction.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-04-03DOI: 10.1515/phys-2024-0007
Humaira Yasmin, Laila A. AL-Essa, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed
{"title":"Magnetohydrodynamic water-based hybrid nanofluid flow comprising diamond and copper nanoparticles on a stretching sheet with slips constraints","authors":"Humaira Yasmin, Laila A. AL-Essa, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed","doi":"10.1515/phys-2024-0007","DOIUrl":"https://doi.org/10.1515/phys-2024-0007","url":null,"abstract":"Hybrid nanofluid problems are used for augmentation of thermal transportation in various industrial applications. Therefore, the present problem is studied for the heat and mass transportation features of hybrid nanofluid caused by extending surface along with porous media. In this investigation, the authors have emphasized to analyze hybrid nanofluid flow containing diamond and copper nanoparticles on an extending surface. Furthermore, the velocity, temperature, and concentration slip constraints are adopted to examine the flow of fluid. Heat source, chemical reactivity, thermal radiation, Brownian motion and effects are taken into consideration. Nonlinear modeled equations are converted into dimensionless through similarity variables. By adopting the homotopy analysis method, the resulting equations are simulated analytically. The impacts of various emerging factors on the flow profiles (<jats:italic>i.e.</jats:italic>, velocities, temperature, concentration, skin frictions, local Nusselt number, and Sherwood number) are shown using Figures and Tables. The major key findings reveal that the hybrid nanofluid temperature is higher but the concentration is lower for a Brownian diffusivity parameter. Moreover, increment role of heat transport is achieved due to the increment in radiation factor, thermophoresis, Brownian motion factors, and Eckert number. It has also been observed that velocity in <jats:italic>x</jats:italic>-direction converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.8</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>f</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.5</m:mn> </m:math> <jats:tex-math>-0.8le {hslash }_{text{f}}le 0.5</jats:tex-math> </jats:alternatives> </jats:inline-formula>, in <jats:italic>y</jats:italic>-direction velocity is convergent in the zone <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>g</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.35</m:mn> </m:math> <jats:tex-math>-0.6le {hslash }_{text{g}}le 0.35</jats:tex-math> </jats:alternatives> </jats:inline-formula>, while temperature converges in the region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0007_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>0.6</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mtext>θ</m:mtext> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0.4</m:mn> </m:math","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}