Soft Robotics最新文献

筛选
英文 中文
Reticular Origami Soft Robotic Gripper for Shape-Adaptive and Bistable Rapid Grasping 用于形状自适应和双稳态快速抓取的网状折纸软机器人抓手
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-04-04 DOI: 10.1089/soro.2023.0051
Ningzhe Hou, Mingxin Wu, Qin Zhao, Zhenhua Tang, Kaiwei Wang, Xiaoxian Xu, Xingwen Zheng, Guangming Xie
{"title":"Reticular Origami Soft Robotic Gripper for Shape-Adaptive and Bistable Rapid Grasping","authors":"Ningzhe Hou, Mingxin Wu, Qin Zhao, Zhenhua Tang, Kaiwei Wang, Xiaoxian Xu, Xingwen Zheng, Guangming Xie","doi":"10.1089/soro.2023.0051","DOIUrl":"https://doi.org/10.1089/soro.2023.0051","url":null,"abstract":"","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140742775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Onboard Proportional Control of Multi-Chamber Soft Pneumatic Robots: A Magnetorheological Elastomer Valve Array 实现多腔软气动机器人的板载比例控制:磁流变弹性体阀门阵列
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-04-04 DOI: 10.1089/soro.2023.0049
Sihan Wang, Peizhi Zhang, Liang He, P. Maiolino
{"title":"Toward Onboard Proportional Control of Multi-Chamber Soft Pneumatic Robots: A Magnetorheological Elastomer Valve Array","authors":"Sihan Wang, Peizhi Zhang, Liang He, P. Maiolino","doi":"10.1089/soro.2023.0049","DOIUrl":"https://doi.org/10.1089/soro.2023.0049","url":null,"abstract":"","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140744845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proprioception and Control of a Soft Pneumatic Actuator Made of a Self-Healable Hydrogel. 自愈合水凝胶软气动致动器的感知与控制
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-04-03 DOI: 10.1089/soro.2023.0180
Antonio López-Díaz, Jesús De La Morena, Andrei Braic, Carlos Serna, Francisco Ramos, Ester Vázquez, Andrés S Vázquez
{"title":"Proprioception and Control of a Soft Pneumatic Actuator Made of a Self-Healable Hydrogel.","authors":"Antonio López-Díaz, Jesús De La Morena, Andrei Braic, Carlos Serna, Francisco Ramos, Ester Vázquez, Andrés S Vázquez","doi":"10.1089/soro.2023.0180","DOIUrl":"https://doi.org/10.1089/soro.2023.0180","url":null,"abstract":"The current evolutionary trends in soft robotics try to exploit the capacities of smart materials to achieve compact robotics designs with embodied intelligence. In this way, the number of elements that compose the soft robot can be reduced, as the smart material can cover different aspects (e.g., structure and sensorization) all in one. This work follows this tendency and presents a custom-designed hydrogel that exhibits two smart features, self-healing and ionic conductivity, used to build a pneumatic actuator. The self-healing capability provides the actuator's structure with the ability to self-repair from damages (e.g., punctures or cuts), an important quality to prolong the life cycle of the actuator. The ionic conductivity enables the actuator's proprioception: the structure itself serves as a curvature sensor. The behavior of this proprioceptive curvature sensor is analyzed in this work, studying its linearity, stability, and performance after a self-healing process. This sensor is also proposed as feedback in a closed-loop scheme to automatically control the actuator's curvature. A proportional-integral-derivative controller is designed based on an empirical model of the actuator's dynamics, and then validated in experimental tests, proving the proprioceptive sensor as proper feedback. These control tests are performed over undamaged and self-healed actuators, thus demonstrating all the capabilities of our soft material.","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140746607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-Pneumatic Artificial Muscle: Air-Based Thermo-Pneumatic Artificial Muscles for Pumpless Pneumatic Actuation. 热气动人工肌肉:用于无泵气动驱动的气基热气动人工肌肉。
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-04-01 Epub Date: 2023-08-30 DOI: 10.1089/soro.2022.0229
Jiseong Shin, Babar Jamil, Hyungpil Moon, Ja Choon Koo, Hyouk Ryeol Choi, Hugo Rodrigue
{"title":"Thermo-Pneumatic Artificial Muscle: Air-Based Thermo-Pneumatic Artificial Muscles for Pumpless Pneumatic Actuation.","authors":"Jiseong Shin, Babar Jamil, Hyungpil Moon, Ja Choon Koo, Hyouk Ryeol Choi, Hugo Rodrigue","doi":"10.1089/soro.2022.0229","DOIUrl":"10.1089/soro.2022.0229","url":null,"abstract":"<p><p>To make robots more human-like and safer to use around humans, artificial muscles exhibiting compliance have gained significant attention from researchers. However, despite having excellent performance, pneumatic artificial muscles (PAMs) have failed to gain significant traction in commercial mobile applications due to their requirement to be tethered to a pneumatic source. This study presents a thermo-PAM called Thermo-PAM that relies on heating of a volume of air to produce a deformation. This allows for pneumatic actuation using only an electrical power source and thus enables pumpless pneumatic actuation. The actuator uses a high ratio between the heating volume and the deformable volume to produce a high actuation force throughout its entire motion and can produce either contractile or extension motions. The controllability of the actuator was demonstrated as well as its ability to handle heavy payloads. Moreover, it is possible to rely on either positive or negative pressure actuation modes where the positive pressure actuation mode actuates when heated and the negative pressure actuation mode relaxes when heated. The ability to use Thermo-PAMs for different modes of actuation with different operation methods makes the proposed actuator highly versatile and demonstrates its potential for advanced pumpless robotic applications.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10112999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Variable Stiffness Soft Gripper Based on Rotational Layer Jamming. 基于旋转层干扰的可变刚度软抓手
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-02-01 Epub Date: 2023-08-21 DOI: 10.1089/soro.2022.0232
Mingzhu Zhu, Mengying Xie, Yoshiki Mori, Junyue Dai, Sadao Kawamura, Xiaokui Yue
{"title":"A Variable Stiffness Soft Gripper Based on Rotational Layer Jamming.","authors":"Mingzhu Zhu, Mengying Xie, Yoshiki Mori, Junyue Dai, Sadao Kawamura, Xiaokui Yue","doi":"10.1089/soro.2022.0232","DOIUrl":"10.1089/soro.2022.0232","url":null,"abstract":"<p><p>This article presents the design and fabrication of a variable stiffness soft gripper based on layer jamming. Traditional layer jamming units have some limitations, such as complicated multistep fabrication, difficulties in system integration, and diminishing in stiffen effect. In this article, a variable stiffness soft gripper is proposed based on the rotational jamming layers to reduce the slippery phenomenon between layers. To fabricate the proposed complex design, a two-step fabrication method is presented. First, multimaterial 3D printing is applied to directly print out the soft finger body with jamming layers. Second, mold casting is used to fabricate the outer vacuum chamber. The proposed gripper contains a main framework and three identical variable stiffness soft fingers. To demonstrate the effectiveness of the design, the soft gripper is mounted on a robotic arm to test its ability of grasping heavy objects while following complex grasping trajectory. The gripper can successfully grasp an object up to 360 g. Grasping robustness of the proposed gripper can be guaranteed when the robotic arm is moving at acceleration up to 7 m/s<sup>2</sup>. The results prove that the proposed design of the soft gripper can improve the grippers grasping robustness during high-speed movement.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10075681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Magnetic Soft and Reconfigurable Robots. 磁性软机器人和可重构机器人工程。
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-02-01 Epub Date: 2023-08-01 DOI: 10.1089/soro.2022.0206
Linxiaohai Ning, Chayabhan Limpabandhu, Zion Tsz Ho Tse
{"title":"Engineering Magnetic Soft and Reconfigurable Robots.","authors":"Linxiaohai Ning, Chayabhan Limpabandhu, Zion Tsz Ho Tse","doi":"10.1089/soro.2022.0206","DOIUrl":"10.1089/soro.2022.0206","url":null,"abstract":"<p><p>Magnetic control has gained popularity recently due to its ability to enhance soft robots with reconfigurability and untethered maneuverability, among other capabilities. Several advancements in the fabrication and application of reconfigurable magnetic soft robots have been reported. This review summarizes novel fabrication techniques for designing magnetic soft robots, including chemical and physical methods. Mechanisms of reconfigurability and deformation properties are discussed in detail. The maneuverability of magnetic soft robots is then briefly discussed. Finally, the present challenges and possible future work in designing reconfigurable magnetic soft robots for biomedical applications are identified.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9917154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse Origami Design Model for Soft Robotic Development. 用于软机器人开发的反折纸设计模型
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-02-01 Epub Date: 2023-08-24 DOI: 10.1089/soro.2022.0197
Qiqiang Hu, Junyang Li, Jian Tao, Erbao Dong, Dong Sun
{"title":"Inverse Origami Design Model for Soft Robotic Development.","authors":"Qiqiang Hu, Junyang Li, Jian Tao, Erbao Dong, Dong Sun","doi":"10.1089/soro.2022.0197","DOIUrl":"10.1089/soro.2022.0197","url":null,"abstract":"<p><p>Origami provides an opportunity to construct a wide range of 3D functional structures by folding a flat sheet. It can be used to develop various soft functional robots by combining soft smart actuators. However, a simple and an effective model that can address the challenging problem of designing origami patterns to connect origami design with robotics is lacking, thereby greatly increasing the threshold of soft origami robots and hindering its development. This study proposes an easy-to-use inverse origami design model to generate the flat crease pattern from the desired folded shape automatically while simulating origami morphing by simply providing the shape parameters or 2D shape graphics. This method overcomes the difficulty of origami design and enables a close connection between origami and robotics. Through this method, various soft origami robots can be developed with low design complexity and time cost to achieve different functions, thereby promoting the development of soft origami robots.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10070353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired Soft Spine Enables Small-Scale Robotic Rat to Conquer Challenging Environments. 受生物启发的软脊柱使小型机器人鼠能够征服充满挑战的环境。
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-02-01 Epub Date: 2023-07-21 DOI: 10.1089/soro.2022.0220
Ruochao Wang, Hang Xiao, Xiaolong Quan, Junhui Gao, Toshio Fukuda, Qing Shi
{"title":"Bioinspired Soft Spine Enables Small-Scale Robotic Rat to Conquer Challenging Environments.","authors":"Ruochao Wang, Hang Xiao, Xiaolong Quan, Junhui Gao, Toshio Fukuda, Qing Shi","doi":"10.1089/soro.2022.0220","DOIUrl":"10.1089/soro.2022.0220","url":null,"abstract":"<p><p>For decades, it has been difficult for small-scale legged robots to conquer challenging environments. To solve this problem, we propose the introduction of a bioinspired soft spine into a small-scale legged robot. By capturing the motion mechanism of rat erector spinae muscles and vertebrae, we designed a cable-driven centrally symmetric soft spine under limited volume and integrated it into our previous robotic rat SQuRo. We called this newly updated robot SQuRo-S. Because of the coupling compliant spine bending and leg locomotion, the environmental adaptability of SQuRo-S significantly improved. We conducted a series of experiments on challenging environments to verify the performance of SQuRo-S. The results demonstrated that SQuRo-S crossed an obstacle of 1.07 body height, thereby outperforming most small-scale legged robots. Remarkably, SQuRo-S traversed a narrow space of 0.86 body width. To the best of our knowledge, SQuRo-S is the first quadruped robot of this scale that is capable of traversing a narrow space with a width smaller than its own width. Moreover, SQuRo-S demonstrated stable walking on mud-sand, pipes, and slopes (20°), and resisted strong external impact and repositioned itself in various body postures. This work provides a new paradigm for enhancing the flexibility and adaptability of small-scale legged robots with spine in challenging environments, and can be easily generalized to the design and development of legged robots with spine of different scales.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9849514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal Locomotion in a Soft Robot Through Hierarchical Actuation. 通过分级驱动实现软体机器人的多模态运动
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-02-01 Epub Date: 2023-07-20 DOI: 10.1089/soro.2022.0198
Qifan Yu, Nick Gravish
{"title":"Multimodal Locomotion in a Soft Robot Through Hierarchical Actuation.","authors":"Qifan Yu, Nick Gravish","doi":"10.1089/soro.2022.0198","DOIUrl":"10.1089/soro.2022.0198","url":null,"abstract":"<p><p>Soft and continuum robots present the opportunity for extremely large ranges of motion, which can enable dexterous, adaptive, and multimodal locomotion behaviors. However, as the number of degrees of freedom (DOF) of a robot increases, the number of actuators should also increase to achieve the full actuation potential. This presents a dilemma in mobile soft robot design: physical space and power requirements restrict the number and type of actuators available and may ultimately limit the movement capabilities of soft robots with high-DOF appendages. Restrictions on actuation of continuum appendages ultimately may limit the various movement capabilities of soft robots. In this work, we demonstrate multimodal behaviors in an underwater robot called \"Hexapus.\" A hierarchical actuation design for multiappendage soft robots is presented in which a single high-power motor actuates all appendages for locomotion, while smaller low-power motors augment the shape of each appendage. The flexible appendages are designed to be capable of hyperextension for thrust, and flexion for grasping with a peak pullout force of 32 N. For propulsion, we incorporate an elastic membrane connected across the base of each tentacle, which is stretched slowly by the high-power motor and released rapidly through a slip-gear mechanism. Through this actuation arrangement, Hexapus is capable of underwater locomotion with low cost of transport (COT = 1.44 at 16.5 mm/s) while swimming and a variety of multimodal locomotion behaviors, including swimming, turning, grasping, and crawling, which we demonstrate in experiment.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9848248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent Representation-Based Learning Controller for Pneumatic and Hydraulic Dual Actuation of Pressure-Driven Soft Actuators. 基于潜意识表征的学习控制器,用于压力驱动软执行器的气动和液压双重驱动
IF 7.9 2区 计算机科学
Soft Robotics Pub Date : 2024-02-01 Epub Date: 2023-08-17 DOI: 10.1089/soro.2022.0224
Taku Sugiyama, Kyo Kutsuzawa, Dai Owaki, Mitsuhiro Hayashibe
{"title":"Latent Representation-Based Learning Controller for Pneumatic and Hydraulic Dual Actuation of Pressure-Driven Soft Actuators.","authors":"Taku Sugiyama, Kyo Kutsuzawa, Dai Owaki, Mitsuhiro Hayashibe","doi":"10.1089/soro.2022.0224","DOIUrl":"10.1089/soro.2022.0224","url":null,"abstract":"<p><p>The pneumatic and hydraulic dual actuation of pressure-driven soft actuators (PSAs) is promising because of their potential to develop novel practical soft robots and expand the range of soft robot applications. However, the physical characteristics of air and water are largely different, which makes it challenging to quickly adapt to a selected actuation method and achieve method-independent accurate control performance. Herein, we propose a novel LAtent Representation-based Feedforward Neural Network (LAR-FNN) for dual actuation. The LAR-FNN consists of an autoencoder (AE) and a feedforward neural network (FNN). The AE generates a latent representation of a PSA from a 30-s stairstep response. Subsequently, the FNN provides an individual inverse model of the target PSA and calculates feedforward control input by using the latent representation. The experimental results with PSAs demonstrate that the LAR-FNN can meet the requirements of dual actuation control (i.e., accurate control performance regardless of the actuation method with a short adaptation time) with a single neural network. The results suggest that a LAR-FNN can contribute to soft dual-actuation robot development and the field of soft robotics.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10011699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信