{"title":"基于形状记忆聚合物/钕铁硼复合材料的分段可控运动刚度可调磁致动器。","authors":"Weifan Zhou,Lei Fu,Yangyong Zhao,Hao Zhu,Shengzhao Li,Lu Peng,Jingyi Xu,Shihao Deng,Zhen Zhou,Tie Li,Ting Zhang","doi":"10.1089/soro.2023.0184","DOIUrl":null,"url":null,"abstract":"Soft magnetic robots have attracted extensive research interest recently due to their fast-transforming ability and programmability. Although the inherent softness of the matrix materials enables dexterity and safe interactions, the contradiction between the easy shape transformation of the soft matrices and load carrying capacity, as well as the difficulty of independently controllable motion of individual segments, severely limits its design space and application potentials. Herein, we have proposed a strategy to adjust the modulus of shape memory polymer composite embedded with hard magnetic particles by in situ Joule heating of printed circuit, which can reversibly change the stiffness from 4.1 GPa at 25°C to 10.9 MPa at 70°C. The stiffness tunable magnetic robots realize the compatibility of fast reversible shape transformation and high load carrying capacity. Furthermore, multiple separated Joule circuits are designed for the independently controllable motion of individual segments. The simulation of Joule heating and magnetic actuation is used to guide the design of devices. The concept of simultaneously programming magnetic anisotropy and stiffness proposed in this work greatly expands the design space and new applications of magnetic actuators, including soft grippers for heavy loads and bionic hand with independent motion of fingers.","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"27 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stiffness Tunable Magnetic Actuators Based on Shape Memory Polymer/NdFeB Composite for Segmental Controllable Motion.\",\"authors\":\"Weifan Zhou,Lei Fu,Yangyong Zhao,Hao Zhu,Shengzhao Li,Lu Peng,Jingyi Xu,Shihao Deng,Zhen Zhou,Tie Li,Ting Zhang\",\"doi\":\"10.1089/soro.2023.0184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft magnetic robots have attracted extensive research interest recently due to their fast-transforming ability and programmability. Although the inherent softness of the matrix materials enables dexterity and safe interactions, the contradiction between the easy shape transformation of the soft matrices and load carrying capacity, as well as the difficulty of independently controllable motion of individual segments, severely limits its design space and application potentials. Herein, we have proposed a strategy to adjust the modulus of shape memory polymer composite embedded with hard magnetic particles by in situ Joule heating of printed circuit, which can reversibly change the stiffness from 4.1 GPa at 25°C to 10.9 MPa at 70°C. The stiffness tunable magnetic robots realize the compatibility of fast reversible shape transformation and high load carrying capacity. Furthermore, multiple separated Joule circuits are designed for the independently controllable motion of individual segments. The simulation of Joule heating and magnetic actuation is used to guide the design of devices. The concept of simultaneously programming magnetic anisotropy and stiffness proposed in this work greatly expands the design space and new applications of magnetic actuators, including soft grippers for heavy loads and bionic hand with independent motion of fingers.\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2023.0184\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2023.0184","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Stiffness Tunable Magnetic Actuators Based on Shape Memory Polymer/NdFeB Composite for Segmental Controllable Motion.
Soft magnetic robots have attracted extensive research interest recently due to their fast-transforming ability and programmability. Although the inherent softness of the matrix materials enables dexterity and safe interactions, the contradiction between the easy shape transformation of the soft matrices and load carrying capacity, as well as the difficulty of independently controllable motion of individual segments, severely limits its design space and application potentials. Herein, we have proposed a strategy to adjust the modulus of shape memory polymer composite embedded with hard magnetic particles by in situ Joule heating of printed circuit, which can reversibly change the stiffness from 4.1 GPa at 25°C to 10.9 MPa at 70°C. The stiffness tunable magnetic robots realize the compatibility of fast reversible shape transformation and high load carrying capacity. Furthermore, multiple separated Joule circuits are designed for the independently controllable motion of individual segments. The simulation of Joule heating and magnetic actuation is used to guide the design of devices. The concept of simultaneously programming magnetic anisotropy and stiffness proposed in this work greatly expands the design space and new applications of magnetic actuators, including soft grippers for heavy loads and bionic hand with independent motion of fingers.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.