Yunbeom Lee, Key Young Oang, Doyeong Kim, Hyotcherl Ihee
{"title":"A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics.","authors":"Yunbeom Lee, Key Young Oang, Doyeong Kim, Hyotcherl Ihee","doi":"10.1063/4.0000249","DOIUrl":"https://doi.org/10.1063/4.0000249","url":null,"abstract":"<p><p>The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 3","pages":"031301"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2024-03-26eCollection Date: 2024-03-01DOI: 10.1063/4.0000243
Jang Hyeob Sohn, Gyeongbo Kang, Tae-Kyu Choi, Gyusang Lee, Changhoo Lee, Sae Hwan Chun, Jaeku Park, Dongbin Shin, Byoung-Ick Cho
{"title":"High-energy-resolution off-resonant spectroscopy with self-seeded x-ray free-electron laser pulses.","authors":"Jang Hyeob Sohn, Gyeongbo Kang, Tae-Kyu Choi, Gyusang Lee, Changhoo Lee, Sae Hwan Chun, Jaeku Park, Dongbin Shin, Byoung-Ick Cho","doi":"10.1063/4.0000243","DOIUrl":"10.1063/4.0000243","url":null,"abstract":"<p><p>This paper presents the implementation of high-energy-resolution off-resonant spectroscopy (HEROS) measurements using self-seeded x-ray free-electron laser (XFEL) pulses. This study systematically investigated XFEL conditions, including photon energy and accumulated shot numbers, to optimize the measurement efficiency for copper foil samples near the <i>K</i>-edge. The x-ray absorption spectra reconstructed using HEROS were compared with those derived from fluorescence-yield measurements. The HEROS-based spectra exhibited consistent line shapes independent of the sample thickness. The potential application of HEROS to high-temperature copper was also explored. HEROS offers distinct advantages including scan-free measurement of x-ray absorption spectra with reduced core-hole lifetime broadening and self-absorption effects. Using self-seeded XFEL pulses, HEROS facilitates single-shot-based pump-probe measurements to investigate the ultrafast dynamics in various materials and diverse conditions.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 2","pages":"024304"},"PeriodicalIF":2.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140307505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2024-03-25eCollection Date: 2024-03-01DOI: 10.1063/4.0000231
Thomas M Sutter, Joshua S H Lee, Atharva V Kulkarni, Pietro Musumeci, Anshul Kogar
{"title":"Vector-based feedback of continuous wave radiofrequency compression cavity for ultrafast electron diffraction.","authors":"Thomas M Sutter, Joshua S H Lee, Atharva V Kulkarni, Pietro Musumeci, Anshul Kogar","doi":"10.1063/4.0000231","DOIUrl":"10.1063/4.0000231","url":null,"abstract":"<p><p>The temporal resolution of ultrafast electron diffraction at weakly relativistic beam energies (<math><mi>≲</mi></math>100 keV) suffers from space-charge induced electron pulse broadening. We describe the implementation of a radio frequency (RF) cavity operating in the continuous wave regime to compress high repetition rate electron bunches from a 40.4 kV DC photoinjector for ultrafast electron diffraction applications. Active stabilization of the RF amplitude and phase through a feedback loop based on the demodulated in-phase and quadrature components of the RF signal is demonstrated. This scheme yields 144 ± 19 fs RMS temporal resolution in pump-probe studies.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 2","pages":"024303"},"PeriodicalIF":2.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2024-03-25eCollection Date: 2024-03-01DOI: 10.1063/4.0000240
P Denham, Y Yang, V Guo, A Fisher, X Shen, T Xu, R J England, R K Li, P Musumeci
{"title":"High energy electron diffraction instrument with tunable camera length.","authors":"P Denham, Y Yang, V Guo, A Fisher, X Shen, T Xu, R J England, R K Li, P Musumeci","doi":"10.1063/4.0000240","DOIUrl":"10.1063/4.0000240","url":null,"abstract":"<p><p>Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (>500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å<sup>-1</sup> in agreement with beam transport simulations.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 2","pages":"024302"},"PeriodicalIF":2.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2024-02-21eCollection Date: 2024-01-01DOI: 10.1063/4.0000205
Junhyung Kim, Sojin Moon, Tod D Romo, Yifei Yang, Euiyoung Bae, George N Phillips
{"title":"Conformational dynamics of adenylate kinase in crystals.","authors":"Junhyung Kim, Sojin Moon, Tod D Romo, Yifei Yang, Euiyoung Bae, George N Phillips","doi":"10.1063/4.0000205","DOIUrl":"10.1063/4.0000205","url":null,"abstract":"<p><p>Adenylate kinase is a ubiquitous enzyme in living systems and undergoes dramatic conformational changes during its catalytic cycle. For these reasons, it is widely studied by genetic, biochemical, and biophysical methods, both experimental and theoretical. We have determined the basic crystal structures of three differently liganded states of adenylate kinase from <i>Methanotorrus igneus</i>, a hyperthermophilic organism whose adenylate kinase is a homotrimeric oligomer. The multiple copies of each protomer in the asymmetric unit of the crystal provide a unique opportunity to study the variation in the structure and were further analyzed using advanced crystallographic refinement methods and analysis tools to reveal conformational heterogeneity and, thus, implied dynamic behaviors in the catalytic cycle.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 1","pages":"014702"},"PeriodicalIF":2.8,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2024-02-21eCollection Date: 2024-01-01DOI: 10.1063/4.0000229
Lars Paulson, Sankar Raju Narayanasamy, Megan L Shelby, Matthias Frank, Martin Trebbin
{"title":"Advanced manufacturing provides tailor-made solutions for crystallography with x-ray free-electron lasers.","authors":"Lars Paulson, Sankar Raju Narayanasamy, Megan L Shelby, Matthias Frank, Martin Trebbin","doi":"10.1063/4.0000229","DOIUrl":"10.1063/4.0000229","url":null,"abstract":"<p><p>Serial crystallography at large facilities, such as x-ray free-electron lasers and synchrotrons, evolved as a powerful method for the high-resolution structural investigation of proteins that are critical for human health, thus advancing drug discovery and novel therapies. However, a critical barrier to successful serial crystallography experiments lies in the efficient handling of the protein microcrystals and solutions at microscales. Microfluidics are the obvious approach for any high-throughput, nano-to-microliter sample handling, that also requires design flexibility and rapid prototyping to deal with the variable shapes, sizes, and density of crystals. Here, we discuss recent advances in polymer 3D printing for microfluidics-based serial crystallography research and present a demonstration of emerging, large-scale, nano-3D printing approaches leading into the future of 3D sample environment and delivery device fabrication from liquid jet gas-dynamic virtual nozzles devices to fixed-target sample environment technology.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 1","pages":"011101"},"PeriodicalIF":2.8,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2024-02-14eCollection Date: 2024-01-01DOI: 10.1063/4.0000232
Loes M J Kroon-Batenburg, Matthew P Lightfoot, Natalie T Johnson, John R Helliwell
{"title":"Raw diffraction data and reproducibility.","authors":"Loes M J Kroon-Batenburg, Matthew P Lightfoot, Natalie T Johnson, John R Helliwell","doi":"10.1063/4.0000232","DOIUrl":"10.1063/4.0000232","url":null,"abstract":"<p><p>In recent years, there has been a major expansion in digital storage capability for hosting raw diffraction datasets. Naturally, the question has now arisen as to the benefits and costs for the preservation of such raw, i.e., experimental diffraction datasets. We describe the consultations made of the global structural chemistry, i.e., chemical crystallography community from the points of view of the International Union of Crystallography (IUCr) Committee on Data, of which JRH was the Chair until very recently, and the IUCrData Raw Data Letters initiative, for which LKB is the Main Editor. The monitoring by the CCDC of CSD depositions which cite the digital object identifiers of raw diffraction datasets provides interesting statistics by probe (x-ray, neutron, or electron) and by home lab vs central facility. Clearly, a better understanding of the reproducibility of current analysis procedures is at hand. Policies for publication requiring raw data have been updated in IUCr Journals for macromolecular crystallography, namely, that raw data should be made available for a new crystal structure or a new method as well as the wwPDB deposition. For chemical crystallography, such a step requiring raw data archiving has not yet been recommended by the IUCr Commission on Structural Chemistry.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 1","pages":"011301"},"PeriodicalIF":2.8,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2024-02-14eCollection Date: 2024-01-01DOI: 10.1063/4.0000228
Arne Ungeheuer, Nora Bach, Mashood T Mir, Ahmed S Hassanien, Lukas Nöding, Thomas Baumert, Sascha Schäfer, Arne Senftleben
{"title":"Coherent acoustic phonons in a coupled hexagonal boron nitride-graphite heterostructure.","authors":"Arne Ungeheuer, Nora Bach, Mashood T Mir, Ahmed S Hassanien, Lukas Nöding, Thomas Baumert, Sascha Schäfer, Arne Senftleben","doi":"10.1063/4.0000228","DOIUrl":"10.1063/4.0000228","url":null,"abstract":"<p><p>Femtosecond optically excited coherent acoustic phonon modes (CAPs) are investigated in a free-standing van der Waals heterostructure composed of a 20-nm transparent hexagonal boron nitride (hBN) and a 42-nm opaque graphite layer. Employing ultrafast electron diffraction, which allows for the independent evaluation of strain dynamics in the constituent material layers, three different CAP modes are identified within the bilayer stack after the optical excitation of the graphite layer. An analytical model is used to discuss the creation of individual CAP modes. Furthermore, their excitation mechanisms in the heterostructure are inferred from the relative phases of these modes by comparison with a numerical linear-chain model. The results support an ultrafast heat transfer mechanism from graphite to the hBN lattice system, which is important to consider when using this material combination in devices.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 1","pages":"014501"},"PeriodicalIF":2.8,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2024-01-31eCollection Date: 2024-01-01DOI: 10.1063/4.0000226
Duncan Burns, Nikolas Provatas, Martin Grant
{"title":"Phase field crystal models with applications to laser deposition: A review.","authors":"Duncan Burns, Nikolas Provatas, Martin Grant","doi":"10.1063/4.0000226","DOIUrl":"10.1063/4.0000226","url":null,"abstract":"<p><p>In this article, we address the application of phase field crystal (PFC) theory, a hybrid atomistic-continuum approach, for modeling nanostructure kinetics encountered in laser deposition. We first provide an overview of the PFC methodology, highlighting recent advances to incorporate phononic and heat transport mechanisms. To simulate laser heating, energy is deposited onto a number of polycrystalline, two-dimensional samples through the application of initial stochastic fluctuations. We first demonstrate the ability of the model to simulate plasticity and recrystallization events that follow laser heating in the isothermal limit. Importantly, we also show that sufficient kinetic energy can cause voiding, which serves to suppress shock propagation. We subsequently employ a newly developed thermo-density PFC theory, coined thermal field crystal (TFC), to investigate laser heating of polycrystalline samples under non-isothermal conditions. We observe that the latent heat of transition associated with ordering can lead to long lasting metastable structures and defects, with a healing rate linked to the thermal diffusion. Finally, we illustrate that the lattice temperature simulated by the TFC model is in qualitative agreement with predictions of conventional electron-phonon two-temperature models. We expect that our new TFC formalism can be useful for predicting transient structures that result from rapid laser heating and re-solidification processes.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 1","pages":"014101"},"PeriodicalIF":2.8,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural Dynamics-UsPub Date : 2023-12-04eCollection Date: 2023-11-01DOI: 10.1063/4.0000203
K M Siddiqui, D B Durham, F Cropp, F Ji, S Paiagua, C Ophus, N C Andresen, L Jin, J Wu, S Wang, X Zhang, W You, M Murnane, M Centurion, X Wang, D S Slaughter, R A Kaindl, P Musumeci, A M Minor, D Filippetto
{"title":"Relativistic ultrafast electron diffraction at high repetition rates.","authors":"K M Siddiqui, D B Durham, F Cropp, F Ji, S Paiagua, C Ophus, N C Andresen, L Jin, J Wu, S Wang, X Zhang, W You, M Murnane, M Centurion, X Wang, D S Slaughter, R A Kaindl, P Musumeci, A M Minor, D Filippetto","doi":"10.1063/4.0000203","DOIUrl":"10.1063/4.0000203","url":null,"abstract":"<p><p>The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"10 6","pages":"064302"},"PeriodicalIF":2.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}