铁铂纳米粒子中特定元素的超快晶格动力学。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Structural Dynamics-Us Pub Date : 2024-11-08 eCollection Date: 2024-11-01 DOI:10.1063/4.0000260
Diego Turenne, Igor Vaskivskyi, Klaus Sokolowski-Tinten, Xijie J Wang, Alexander H Reid, Xiaozhe Shen, Ming-Fu Lin, Suji Park, Stephen Weathersby, Michael Kozina, Matthias C Hoffmann, Jian Wang, Jakub Sebesta, Yukiko K Takahashi, Oscar Grånäs, Peter M Oppeneer, Hermann A Dürr
{"title":"铁铂纳米粒子中特定元素的超快晶格动力学。","authors":"Diego Turenne, Igor Vaskivskyi, Klaus Sokolowski-Tinten, Xijie J Wang, Alexander H Reid, Xiaozhe Shen, Ming-Fu Lin, Suji Park, Stephen Weathersby, Michael Kozina, Matthias C Hoffmann, Jian Wang, Jakub Sebesta, Yukiko K Takahashi, Oscar Grånäs, Peter M Oppeneer, Hermann A Dürr","doi":"10.1063/4.0000260","DOIUrl":null,"url":null,"abstract":"<p><p>Light-matter interaction at the nanoscale in magnetic alloys and heterostructures is a topic of intense research in view of potential applications in high-density magnetic recording. While the element-specific dynamics of electron spins is directly accessible to resonant x-ray pulses with femtosecond time structure, the possible element-specific atomic motion remains largely unexplored. We use ultrafast electron diffraction (UED) to probe the temporal evolution of lattice Bragg peaks of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. The diffraction interference between Fe and Pt sublattices enables us to demonstrate that the Fe mean square vibration amplitudes are significantly larger that those of Pt as expected from their different atomic mass. Both are found to increase as energy is transferred from the laser-excited electrons to the lattice. Contrary to this intuitive behavior, we observe a laser-induced lattice expansion that is larger for Pt than for Fe atoms during the first picosecond after laser excitation. This effect points to the strain-wave driven lattice expansion with the longitudinal acoustic Pt motion dominating that of Fe.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 6","pages":"064501"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585363/pdf/","citationCount":"0","resultStr":"{\"title\":\"Element-specific ultrafast lattice dynamics in FePt nanoparticles.\",\"authors\":\"Diego Turenne, Igor Vaskivskyi, Klaus Sokolowski-Tinten, Xijie J Wang, Alexander H Reid, Xiaozhe Shen, Ming-Fu Lin, Suji Park, Stephen Weathersby, Michael Kozina, Matthias C Hoffmann, Jian Wang, Jakub Sebesta, Yukiko K Takahashi, Oscar Grånäs, Peter M Oppeneer, Hermann A Dürr\",\"doi\":\"10.1063/4.0000260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Light-matter interaction at the nanoscale in magnetic alloys and heterostructures is a topic of intense research in view of potential applications in high-density magnetic recording. While the element-specific dynamics of electron spins is directly accessible to resonant x-ray pulses with femtosecond time structure, the possible element-specific atomic motion remains largely unexplored. We use ultrafast electron diffraction (UED) to probe the temporal evolution of lattice Bragg peaks of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. The diffraction interference between Fe and Pt sublattices enables us to demonstrate that the Fe mean square vibration amplitudes are significantly larger that those of Pt as expected from their different atomic mass. Both are found to increase as energy is transferred from the laser-excited electrons to the lattice. Contrary to this intuitive behavior, we observe a laser-induced lattice expansion that is larger for Pt than for Fe atoms during the first picosecond after laser excitation. This effect points to the strain-wave driven lattice expansion with the longitudinal acoustic Pt motion dominating that of Fe.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"11 6\",\"pages\":\"064501\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000260\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000260","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

鉴于在高密度磁记录中的潜在应用,磁性合金和异质结构中纳米尺度的光-物质相互作用是一个热门研究课题。虽然飞秒时间结构的共振 X 射线脉冲可以直接获取电子自旋的特定元素动力学,但可能的特定元素原子运动在很大程度上仍未得到探索。我们利用超快电子衍射(UED)探测了嵌入碳基质中的铁铂纳米粒子在光学飞秒激光脉冲激发后晶格布拉格峰的时间演变。铁和铂亚晶格之间的衍射干涉使我们能够证明,铁的均方根振动振幅明显大于铂的均方根振动振幅,这是由于它们的原子质量不同。当能量从激光激发的电子转移到晶格时,两者的振幅都会增大。与这种直观行为相反,我们观察到在激光激发后的第一个皮秒内,铂原子的激光诱导晶格膨胀大于铁原子。这种效应表明了应变波驱动的晶格膨胀,铂原子的纵向声波运动主导了铁原子的纵向声波运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Element-specific ultrafast lattice dynamics in FePt nanoparticles.

Light-matter interaction at the nanoscale in magnetic alloys and heterostructures is a topic of intense research in view of potential applications in high-density magnetic recording. While the element-specific dynamics of electron spins is directly accessible to resonant x-ray pulses with femtosecond time structure, the possible element-specific atomic motion remains largely unexplored. We use ultrafast electron diffraction (UED) to probe the temporal evolution of lattice Bragg peaks of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. The diffraction interference between Fe and Pt sublattices enables us to demonstrate that the Fe mean square vibration amplitudes are significantly larger that those of Pt as expected from their different atomic mass. Both are found to increase as energy is transferred from the laser-excited electrons to the lattice. Contrary to this intuitive behavior, we observe a laser-induced lattice expansion that is larger for Pt than for Fe atoms during the first picosecond after laser excitation. This effect points to the strain-wave driven lattice expansion with the longitudinal acoustic Pt motion dominating that of Fe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信