Structural Dynamics-Us最新文献

筛选
英文 中文
Filling data analysis gaps in time-resolved crystallography by machine learning. 用机器学习填补时间分辨晶体学的数据分析空白。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.1063/4.0000280
Justin Trujillo, Russell Fung, Madan Kumar Shankar, Peter Schwander, Ahmad Hosseinizadeh
{"title":"Filling data analysis gaps in time-resolved crystallography by machine learning.","authors":"Justin Trujillo, Russell Fung, Madan Kumar Shankar, Peter Schwander, Ahmad Hosseinizadeh","doi":"10.1063/4.0000280","DOIUrl":"10.1063/4.0000280","url":null,"abstract":"<p><p>There is a growing understanding of the structural dynamics of biological molecules fueled by x-ray crystallography experiments. Time-resolved serial femtosecond crystallography (TR-SFX) with x-ray Free Electron Lasers allows the measurement of ultrafast structural changes in proteins. Nevertheless, this technique comes with some limitations. One major challenge is the quality of data from TR-SFX measurements, which often faces issues like data sparsity, partial recording of Bragg reflections, timing errors, and pixel noise. To overcome these difficulties, conventionally, large volumes of data are collected and grouped into a few temporal bins. The data in each bin are then averaged and paired with the mean of their corresponding jittered timestamps. This procedure provides one structure per bin, resulting in a limited number of averaged structures for the entire time interval spanned by the experiment. Therefore, the information on ultrafast structural dynamics at high temporal resolution is lost. This has initiated research for advanced methods of analyzing experimental TR-SFX data beyond the standard binning and averaging method. To address this problem, we use a machine learning algorithm called Nonlinear Laplacian Spectral Analysis (NLSA), which has emerged as a promising technique for studying the dynamics of complex systems. In this work, we demonstrate the power of this algorithm using synthetic x-ray diffraction snapshots from a protein with significant data incompleteness, timing uncertainties, and noise. Our study confirms that NLSA is a suitable approach that effectively mitigates the effects of these artifacts in TR-SFX data and recovers accurate structural dynamics information hidden in such data.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"12 1","pages":"014101"},"PeriodicalIF":2.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143048342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergent-beam attosecond x-ray crystallography. 会聚束阿秒x射线晶体学。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI: 10.1063/4.0000275
Henry N Chapman, Chufeng Li, Saša Bajt, Mansi Butola, J Lukas Dresselhaus, Dmitry Egorov, Holger Fleckenstein, Nikolay Ivanov, Antonia Kiene, Bjarne Klopprogge, Viviane Kremling, Philipp Middendorf, Dominik Oberthuer, Mauro Prasciolu, T Emilie S Scheer, Janina Sprenger, Jia Chyi Wong, Oleksandr Yefanov, Margarita Zakharova, Wenhui Zhang
{"title":"Convergent-beam attosecond x-ray crystallography.","authors":"Henry N Chapman, Chufeng Li, Saša Bajt, Mansi Butola, J Lukas Dresselhaus, Dmitry Egorov, Holger Fleckenstein, Nikolay Ivanov, Antonia Kiene, Bjarne Klopprogge, Viviane Kremling, Philipp Middendorf, Dominik Oberthuer, Mauro Prasciolu, T Emilie S Scheer, Janina Sprenger, Jia Chyi Wong, Oleksandr Yefanov, Margarita Zakharova, Wenhui Zhang","doi":"10.1063/4.0000275","DOIUrl":"10.1063/4.0000275","url":null,"abstract":"<p><p>Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser. We show that with dispersive optics, such as multilayer Laue lenses of high numerical aperture, it becomes possible to encode time into the resulting diffraction pattern with deep sub-femtosecond precision. Each snapshot diffraction pattern consists of Bragg streaks that can be mapped back to arrival times and positions of X-rays on the face of a crystal. This can span tens of femtoseconds and can be finely sampled as we demonstrate experimentally. The approach brings several other advantages, such as an increase in the number of observable reflections in a snapshot diffraction pattern, all fully integrated, to improve the speed and accuracy of serial crystallography-especially for crystals of small molecules.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"12 1","pages":"014301"},"PeriodicalIF":2.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated edge-to-exascale workflow for real-time steering in neutron scattering experiments. 用于中子散射实验实时转向的从边缘到超大规模的集成工作流程。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2024-12-24 eCollection Date: 2024-11-01 DOI: 10.1063/4.0000279
Junqi Yin, Viktor Reshniak, Siyan Liu, Guannan Zhang, Xiaoping Wang, Zhongcan Xiao, Zachary Morgan, Sylwia Pawledzio, Thomas Proffen, Christina Hoffmann, Huibo Cao, Bryan C Chakoumakos, Yaohua Liu
{"title":"Integrated edge-to-exascale workflow for real-time steering in neutron scattering experiments.","authors":"Junqi Yin, Viktor Reshniak, Siyan Liu, Guannan Zhang, Xiaoping Wang, Zhongcan Xiao, Zachary Morgan, Sylwia Pawledzio, Thomas Proffen, Christina Hoffmann, Huibo Cao, Bryan C Chakoumakos, Yaohua Liu","doi":"10.1063/4.0000279","DOIUrl":"10.1063/4.0000279","url":null,"abstract":"<p><p>We introduce a computational framework that integrates artificial intelligence (AI), machine learning, and high-performance computing to enable real-time steering of neutron scattering experiments using an edge-to-exascale workflow. Focusing on time-of-flight neutron event data at the Spallation Neutron Source, our approach combines temporal processing of four-dimensional neutron event data with predictive modeling for multidimensional crystallography. At the core of this workflow is the Temporal Fusion Transformer model, which provides voxel-level precision in predicting 3D neutron scattering patterns. The system incorporates edge computing for rapid data preprocessing and exascale computing via the Frontier supercomputer for large-scale AI model training, enabling adaptive, data-driven decisions during experiments. This framework optimizes neutron beam time, improves experimental accuracy, and lays the foundation for automation in neutron scattering. Although real-time experiment steering is still in the proof-of-concept stage, the demonstrated potential of this system offers a substantial reduction in data processing time from hours to minutes via distributed training, and significant improvements in model accuracy, setting the stage for widespread adoption across neutron scattering facilities and more efficient exploration of complex material systems.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 6","pages":"064303"},"PeriodicalIF":2.3,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive characterization of gas dynamic virtual nozzles for x-ray free-electron laser experiments. 用于 X 射线自由电子激光实验的气体动态虚拟喷嘴的综合表征。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2024-11-26 eCollection Date: 2024-11-01 DOI: 10.1063/4.0000262
Konstantinos Karpos, Sahba Zaare, Dimitra Manatou, Roberto C Alvarez, Vivek Krishnan, Clint Ottmar, Jodi Gilletti, Aian Pableo, Diandra Doppler, Adil Ansari, Reza Nazari, Alexandra Ros, Richard A Kirian
{"title":"Comprehensive characterization of gas dynamic virtual nozzles for x-ray free-electron laser experiments.","authors":"Konstantinos Karpos, Sahba Zaare, Dimitra Manatou, Roberto C Alvarez, Vivek Krishnan, Clint Ottmar, Jodi Gilletti, Aian Pableo, Diandra Doppler, Adil Ansari, Reza Nazari, Alexandra Ros, Richard A Kirian","doi":"10.1063/4.0000262","DOIUrl":"10.1063/4.0000262","url":null,"abstract":"<p><p>We introduce a hardware-software system for rapidly characterizing liquid microjets for x-ray diffraction experiments. An open-source python-based software package allows for programmatic and automated data collection and analysis. We show how jet speed, length, and diameter are influenced by nozzle geometry, gas flow rate, liquid viscosity, and liquid flow rate. We introduce \"jet instability\" and \"jet probability\" metrics to help quantify the suitability of a given nozzle for x-ray diffraction experiments. Among our observations were pronounced improvements in jet stability and reliability when using asymmetric needle-tipped nozzles, which allowed for the production of microjects smaller than 250 nm in diameter, traveling faster than 120 m/s.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 6","pages":"064302"},"PeriodicalIF":2.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ProteinReDiff: Complex-based ligand-binding proteins redesign by equivariant diffusion-based generative models. ProteinReDiff:基于等变扩散的生成模型的复合体配体结合蛋白的重新设计。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2024-11-25 eCollection Date: 2024-11-01 DOI: 10.1063/4.0000271
Viet Thanh Duy Nguyen, Nhan D Nguyen, Truong Son Hy
{"title":"ProteinReDiff: Complex-based ligand-binding proteins redesign by equivariant diffusion-based generative models.","authors":"Viet Thanh Duy Nguyen, Nhan D Nguyen, Truong Son Hy","doi":"10.1063/4.0000271","DOIUrl":"10.1063/4.0000271","url":null,"abstract":"<p><p>Proteins, serving as the fundamental architects of biological processes, interact with ligands to perform a myriad of functions essential for life. Designing functional ligand-binding proteins is pivotal for advancing drug development and enhancing therapeutic efficacy. In this study, we introduce ProteinReDiff, an diffusion framework targeting the redesign of ligand-binding proteins. Using equivariant diffusion-based generative models, ProteinReDiff enables the creation of high-affinity ligand-binding proteins without the need for detailed structural information, leveraging instead the potential of initial protein sequences and ligand SMILES strings. Our evaluations across sequence diversity, structural preservation, and ligand binding affinity underscore ProteinReDiff's potential to advance computational drug discovery and protein engineering.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 6","pages":"064102"},"PeriodicalIF":2.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142773872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Element-specific ultrafast lattice dynamics in FePt nanoparticles. 铁铂纳米粒子中特定元素的超快晶格动力学。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2024-11-08 eCollection Date: 2024-11-01 DOI: 10.1063/4.0000260
Diego Turenne, Igor Vaskivskyi, Klaus Sokolowski-Tinten, Xijie J Wang, Alexander H Reid, Xiaozhe Shen, Ming-Fu Lin, Suji Park, Stephen Weathersby, Michael Kozina, Matthias C Hoffmann, Jian Wang, Jakub Sebesta, Yukiko K Takahashi, Oscar Grånäs, Peter M Oppeneer, Hermann A Dürr
{"title":"Element-specific ultrafast lattice dynamics in FePt nanoparticles.","authors":"Diego Turenne, Igor Vaskivskyi, Klaus Sokolowski-Tinten, Xijie J Wang, Alexander H Reid, Xiaozhe Shen, Ming-Fu Lin, Suji Park, Stephen Weathersby, Michael Kozina, Matthias C Hoffmann, Jian Wang, Jakub Sebesta, Yukiko K Takahashi, Oscar Grånäs, Peter M Oppeneer, Hermann A Dürr","doi":"10.1063/4.0000260","DOIUrl":"10.1063/4.0000260","url":null,"abstract":"<p><p>Light-matter interaction at the nanoscale in magnetic alloys and heterostructures is a topic of intense research in view of potential applications in high-density magnetic recording. While the element-specific dynamics of electron spins is directly accessible to resonant x-ray pulses with femtosecond time structure, the possible element-specific atomic motion remains largely unexplored. We use ultrafast electron diffraction (UED) to probe the temporal evolution of lattice Bragg peaks of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. The diffraction interference between Fe and Pt sublattices enables us to demonstrate that the Fe mean square vibration amplitudes are significantly larger that those of Pt as expected from their different atomic mass. Both are found to increase as energy is transferred from the laser-excited electrons to the lattice. Contrary to this intuitive behavior, we observe a laser-induced lattice expansion that is larger for Pt than for Fe atoms during the first picosecond after laser excitation. This effect points to the strain-wave driven lattice expansion with the longitudinal acoustic Pt motion dominating that of Fe.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 6","pages":"064501"},"PeriodicalIF":2.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric conformation of the high-spin state of iron(II)-tris(2,2-bipyridine): Time-resolved x-ray absorption and ultraviolet circular dichroism. 三(2,2-联吡啶)铁(II)高自旋态的不对称构象:时间分辨 X 射线吸收和紫外圆二色性。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2024-11-08 eCollection Date: 2024-11-01 DOI: 10.1063/4.0000268
Nico Sanna, Costantino Zazza, Giovanni Chillemi, Elisabetta Pace, Francesco Cappelluti, Luigi Bencivenni, Malte Oppermann, Maurizio Benfatto, Majed Chergui
{"title":"Asymmetric conformation of the high-spin state of iron(II)-tris(2,2-bipyridine): Time-resolved x-ray absorption and ultraviolet circular dichroism.","authors":"Nico Sanna, Costantino Zazza, Giovanni Chillemi, Elisabetta Pace, Francesco Cappelluti, Luigi Bencivenni, Malte Oppermann, Maurizio Benfatto, Majed Chergui","doi":"10.1063/4.0000268","DOIUrl":"10.1063/4.0000268","url":null,"abstract":"<p><p>We analyze the structures of the low-spin (LS) ground state and the high-spin (HS) lowest excited state of the iron-(II)-tris bipyridine complex ([Fe(bpy)<sub>3</sub>]<sup>2+</sup>) using density functional theory PBE methods, modeling the solvent interactions with conductor-like polarizable continuum model. These calculations are globally benchmarked against a wide range of experimental observables that include ultraviolet-visible linear absorption and circular dichroism (CD) spectra and Fe K-edge x-ray absorption near edge spectra (XANES). The calculations confirm the already established D<sub>3</sub> geometry of the LS state, as well as a departure from this geometry for the HS state, with the appearance of inequivalent Fe-N bond elongations. The simulated structures nicely reproduce the above-mentioned experimental observables. We also calculate the vibrational modes of the LS and HS states. For the former, they reproduce well the vibrational frequencies from published infrared and Raman data, while for the latter, they predict very well the low-frequency vibrational coherences, attributed to Fe-N stretch modes, which were reported in ultrafast spectroscopic experiments. We further present calculations of the high-frequency region, which agree with recent ultrafast transient infrared spectroscopy studies. This work offers a common basis to the structural information encoded in the excited state CD and the Fe K XANES of the HS state tying together different structural IR, UV-visible, and x-ray observables.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 6","pages":"064101"},"PeriodicalIF":2.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling and merging time-resolved pink-beam diffraction with variational inference. 变分推理的时间分辨粉束衍射标度与合并。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2024-11-06 eCollection Date: 2024-11-01 DOI: 10.1063/4.0000269
Kara A Zielinski, Cole Dolamore, Harrison K Wang, Robert W Henning, Mark A Wilson, Lois Pollack, Vukica Srajer, Doeke R Hekstra, Kevin M Dalton
{"title":"Scaling and merging time-resolved pink-beam diffraction with variational inference.","authors":"Kara A Zielinski, Cole Dolamore, Harrison K Wang, Robert W Henning, Mark A Wilson, Lois Pollack, Vukica Srajer, Doeke R Hekstra, Kevin M Dalton","doi":"10.1063/4.0000269","DOIUrl":"10.1063/4.0000269","url":null,"abstract":"<p><p>Time-resolved x-ray crystallography (TR-X) at synchrotrons and free electron lasers is a promising technique for recording dynamics of molecules at atomic resolution. While experimental methods for TR-X have proliferated and matured, data analysis is often difficult. Extracting small, time-dependent changes in signal is frequently a bottleneck for practitioners. Recent work demonstrated this challenge can be addressed when merging redundant observations by a statistical technique known as variational inference (VI). However, the variational approach to time-resolved data analysis requires identification of successful hyperparameters in order to optimally extract signal. In this case study, we present a successful application of VI to time-resolved changes in an enzyme, DJ-1, upon mixing with a substrate molecule, methylglyoxal. We present a strategy to extract high signal-to-noise changes in electron density from these data. Furthermore, we conduct an ablation study, in which we systematically remove one hyperparameter at a time to demonstrate the impact of each hyperparameter choice on the success of our model. We expect this case study will serve as a practical example for how others may deploy VI in order to analyze their time-resolved diffraction data.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 6","pages":"064301"},"PeriodicalIF":2.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142773935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and spin of the low- and high-spin states of Fe2+(phen)3 studied by x-ray scattering and emission spectroscopy. 利用 X 射线散射和发射光谱研究 Fe2+(phen)3 的低自旋态和高自旋态的结构和自旋。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2024-10-23 eCollection Date: 2024-09-01 DOI: 10.1063/4.0000254
Victoria Kabanova, Mathias Sander, Matteo Levantino, Qingyu Kong, Sophie Canton, Marius Retegan, Marco Cammarata, Philipp Lenzen, Latévi Max Daku Lawson, Michael Wulff
{"title":"Structure and spin of the low- and high-spin states of Fe<sup>2+</sup>(phen)<sub>3</sub> studied by x-ray scattering and emission spectroscopy.","authors":"Victoria Kabanova, Mathias Sander, Matteo Levantino, Qingyu Kong, Sophie Canton, Marius Retegan, Marco Cammarata, Philipp Lenzen, Latévi Max Daku Lawson, Michael Wulff","doi":"10.1063/4.0000254","DOIUrl":"https://doi.org/10.1063/4.0000254","url":null,"abstract":"<p><p>The structure and spin of photoexcited Fe<sup>2+</sup>(phen)<sub>3</sub> in water are examined by x-ray scattering and x-ray emission spectroscopy with 100 ps time resolution. Excitation of the low-spin (LS) ground state (GS) to the charge transfer state <sup>1</sup>MLCT<sup>*</sup> leads to the formation of a high-spin (HS) state that returns to the GS in 725 ps. Density functional theory (DFT) predicts a Fe-N bond elongation in HS by 0.19 Å in agreement with the scattering data. The angle between the ligands increases by 5.4° in HS, which allows the solvent to get 0.33 Å closer to Fe in spite of the expansion of the molecule. The rise in solvent temperature from the return of photoproducts to the GS is dominated by the formation dynamics of HS, <sup>1</sup>MLCT<sup>*</sup> → HS, which is followed by a smaller rise from the HS → GS transition. The latter agrees with the 0.61 eV energy gap E(HS)-E(LS) calculated by DFT. However, the temperature rise from the <sup>1</sup>MLCT → HS transition is greater than expected, by a factor of 2.1, which is explained by the re-excitation of nascent HS<sup>*</sup> by the 1.2 ps pump pulse. This hypothesis is supported by optical spectroscopy measurements showing that the 1.2 ps long pump pulse activates the HS<sup>*</sup> → <sup>5</sup>MLCT<sup>*</sup> channel, which is followed by the ultrafast return to HS<sup>*</sup> via intersystem crossing. Finally, the spins of the photoproducts are monitored by the K<sub>β</sub> emission and the spectra confirm that the spins of LS and HS states are 0 and 2, respectively.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 5","pages":"054901"},"PeriodicalIF":2.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. 利用激光驱动源在水窗中进行超快能量色散软 X 射线衍射。
IF 2.3 2区 物理与天体物理
Structural Dynamics-Us Pub Date : 2024-10-11 eCollection Date: 2024-09-01 DOI: 10.1063/4.0000270
Jasmin Jarecki, Martin Hennecke, Themistoklis Sidiropoulos, Matthias Schnuerer, Stefan Eisebitt, Daniel Schick
{"title":"Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source.","authors":"Jasmin Jarecki, Martin Hennecke, Themistoklis Sidiropoulos, Matthias Schnuerer, Stefan Eisebitt, Daniel Schick","doi":"10.1063/4.0000270","DOIUrl":"https://doi.org/10.1063/4.0000270","url":null,"abstract":"<p><p>Time-resolved soft-x-ray-diffraction experiments give access to microscopic processes in a broad range of solid-state materials by probing ultrafast dynamics of ordering phenomena. While laboratory-based high-harmonic generation (HHG) light sources provide the required photon energies, their limited photon flux is distributed over a wide spectral range, rendering typical monochromatic diffraction schemes challenging. Here, we present a scheme for energy-dispersive soft-x-ray diffraction with femtosecond temporal resolution and photon energies across the water window from 200 to 600 eV. The experiment utilizes the broadband nature of the HHG emission to efficiently probe large slices in reciprocal space. As a proof-of-concept, we study the laser-induced structural dynamics of a Mo/Si superlattice in an ultrafast, non-resonant soft-x-ray diffraction experiment. We extract the underlying strain dynamics from the measured shift of its first order superlattice Bragg peak in reciprocal space at photon energies around 500 eV via soft-x-ray scattering simulations.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"11 5","pages":"054303"},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信