Daniel Metternich, Kai Litzius, Sebastian Wintz, Kathinka Gerlinger, Sascha Petz, Dieter Engel, Themistoklis Sidiropoulos, Riccardo Battistelli, Felix Steinbach, Markus Weigand, Steffen Wittrock, Clemens von Korff Schmising, Felix Büttner
{"title":"Defects in magnetic domain walls after single-shot all-optical switching.","authors":"Daniel Metternich, Kai Litzius, Sebastian Wintz, Kathinka Gerlinger, Sascha Petz, Dieter Engel, Themistoklis Sidiropoulos, Riccardo Battistelli, Felix Steinbach, Markus Weigand, Steffen Wittrock, Clemens von Korff Schmising, Felix Büttner","doi":"10.1063/4.0000287","DOIUrl":null,"url":null,"abstract":"<p><p>Helicity-independent all-optical switching (HI-AOS) is the fastest known way to switch the magnetic order parameter. While the switching process of extended areas is well understood, the formation of domain walls enclosing switched areas remains less explored. Here, we study domain walls around all-optically nucleated magnetic domains using x-ray vector spin imaging and observe a high density of vertical Bloch line defects. Surprisingly, the defect density appears to be independent of optical pulse parameters, significantly varies between materials, and is only slightly higher than in domain walls generated by field cycling. A possible explanation is given by time-resolved Kerr microscopy, which reveals that magnetic domains considerably expand after the initial AOS process. During this expansion, and likewise during field cycling, domain walls propagate at speeds above the Walker breakdown. Micromagnetic simulations suggest that at such speeds, domain walls accumulate defects when moving over magnetic pinning sites, explaining similar defect densities after two very different switching processes. The slightly larger defect density after AOS compared to field-induced switching indicates that some defects are created already when the domain wall comes into existence. Our work shows that engineered low-pinning materials are a key ingredient to uncover the intrinsic dynamics of domain wall formation during ultrafast all-optical switching.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"12 2","pages":"024504"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009145/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000287","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Helicity-independent all-optical switching (HI-AOS) is the fastest known way to switch the magnetic order parameter. While the switching process of extended areas is well understood, the formation of domain walls enclosing switched areas remains less explored. Here, we study domain walls around all-optically nucleated magnetic domains using x-ray vector spin imaging and observe a high density of vertical Bloch line defects. Surprisingly, the defect density appears to be independent of optical pulse parameters, significantly varies between materials, and is only slightly higher than in domain walls generated by field cycling. A possible explanation is given by time-resolved Kerr microscopy, which reveals that magnetic domains considerably expand after the initial AOS process. During this expansion, and likewise during field cycling, domain walls propagate at speeds above the Walker breakdown. Micromagnetic simulations suggest that at such speeds, domain walls accumulate defects when moving over magnetic pinning sites, explaining similar defect densities after two very different switching processes. The slightly larger defect density after AOS compared to field-induced switching indicates that some defects are created already when the domain wall comes into existence. Our work shows that engineered low-pinning materials are a key ingredient to uncover the intrinsic dynamics of domain wall formation during ultrafast all-optical switching.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.