Martin Pavelka, Simon Marotzke, Ru-Pan Wang, Mohamed F Elhanoty, Günter Brenner, Siarhei Dziarzhytski, Somnath Jana, W Dieter Engel, Clemens V Korff Schmising, Deeksha Gupta, Igor Vaskivskyi, Tim Amrhein, Nele Thielemann-Kühn, Martin Weinelt, Ronny Knut, Juliane Rönsch-Schulenberg, Evgeny Schneidmiller, Christian Schüßler-Langeheine, Martin Beye, Niko Pontius, Oscar Grånäs, Hermann A Dürr
{"title":"Co50Pt50合金飞秒电荷和自旋动力学。","authors":"Martin Pavelka, Simon Marotzke, Ru-Pan Wang, Mohamed F Elhanoty, Günter Brenner, Siarhei Dziarzhytski, Somnath Jana, W Dieter Engel, Clemens V Korff Schmising, Deeksha Gupta, Igor Vaskivskyi, Tim Amrhein, Nele Thielemann-Kühn, Martin Weinelt, Ronny Knut, Juliane Rönsch-Schulenberg, Evgeny Schneidmiller, Christian Schüßler-Langeheine, Martin Beye, Niko Pontius, Oscar Grånäs, Hermann A Dürr","doi":"10.1063/4.0000297","DOIUrl":null,"url":null,"abstract":"<p><p>The use of advanced x-ray sources plays a key role in the study of dynamic processes in magnetically ordered materials. The progress in x-ray free-electron lasers enables the direct and simultaneous observation of the femtosecond evolution of electron and spin systems through transient x-ray absorption spectroscopy and x-ray magnetic circular dichroism, respectively. Such experiments allow us to resolve the response seen in the population of the spin-split valence states upon optical excitation. Here, we utilize circularly polarized ultrashort soft x-ray pulses from the new helical afterburner undulator at the free-electron laser FLASH in Hamburg to study the femtosecond dynamics of a laser-excited CoPt alloy at the Co L<sub>3</sub>-edge absorption. Despite employing a weaker electronic excitation level, we find a comparable demagnetization for the Co 3<i>d</i>-states in CoPt compared to previous measurements on CoPd. This is attributed to the distinctly different spin-orbit coupling between 3<i>d</i> and 4<i>d</i> vs 3<i>d</i> and 5<i>d</i> elements in the corresponding alloys and multilayers.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"12 2","pages":"024303"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033042/pdf/","citationCount":"0","resultStr":"{\"title\":\"Femtosecond charge and spin dynamics in a Co<sub>50</sub>Pt<sub>50</sub> alloy.\",\"authors\":\"Martin Pavelka, Simon Marotzke, Ru-Pan Wang, Mohamed F Elhanoty, Günter Brenner, Siarhei Dziarzhytski, Somnath Jana, W Dieter Engel, Clemens V Korff Schmising, Deeksha Gupta, Igor Vaskivskyi, Tim Amrhein, Nele Thielemann-Kühn, Martin Weinelt, Ronny Knut, Juliane Rönsch-Schulenberg, Evgeny Schneidmiller, Christian Schüßler-Langeheine, Martin Beye, Niko Pontius, Oscar Grånäs, Hermann A Dürr\",\"doi\":\"10.1063/4.0000297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of advanced x-ray sources plays a key role in the study of dynamic processes in magnetically ordered materials. The progress in x-ray free-electron lasers enables the direct and simultaneous observation of the femtosecond evolution of electron and spin systems through transient x-ray absorption spectroscopy and x-ray magnetic circular dichroism, respectively. Such experiments allow us to resolve the response seen in the population of the spin-split valence states upon optical excitation. Here, we utilize circularly polarized ultrashort soft x-ray pulses from the new helical afterburner undulator at the free-electron laser FLASH in Hamburg to study the femtosecond dynamics of a laser-excited CoPt alloy at the Co L<sub>3</sub>-edge absorption. Despite employing a weaker electronic excitation level, we find a comparable demagnetization for the Co 3<i>d</i>-states in CoPt compared to previous measurements on CoPd. This is attributed to the distinctly different spin-orbit coupling between 3<i>d</i> and 4<i>d</i> vs 3<i>d</i> and 5<i>d</i> elements in the corresponding alloys and multilayers.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"12 2\",\"pages\":\"024303\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033042/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000297\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000297","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Femtosecond charge and spin dynamics in a Co50Pt50 alloy.
The use of advanced x-ray sources plays a key role in the study of dynamic processes in magnetically ordered materials. The progress in x-ray free-electron lasers enables the direct and simultaneous observation of the femtosecond evolution of electron and spin systems through transient x-ray absorption spectroscopy and x-ray magnetic circular dichroism, respectively. Such experiments allow us to resolve the response seen in the population of the spin-split valence states upon optical excitation. Here, we utilize circularly polarized ultrashort soft x-ray pulses from the new helical afterburner undulator at the free-electron laser FLASH in Hamburg to study the femtosecond dynamics of a laser-excited CoPt alloy at the Co L3-edge absorption. Despite employing a weaker electronic excitation level, we find a comparable demagnetization for the Co 3d-states in CoPt compared to previous measurements on CoPd. This is attributed to the distinctly different spin-orbit coupling between 3d and 4d vs 3d and 5d elements in the corresponding alloys and multilayers.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.