V. Kucheruk, I. Kurytnik, P. Kulakov, R. Lishchuk, Y. Moskvichova, A. Kulakova
{"title":"Definition of dynamic characteristics of pointer measuring devices on the basis of automatic indications determination","authors":"V. Kucheruk, I. Kurytnik, P. Kulakov, R. Lishchuk, Y. Moskvichova, A. Kulakova","doi":"10.24425/ACS.2018.124709","DOIUrl":"https://doi.org/10.24425/ACS.2018.124709","url":null,"abstract":"The article presents the method and algorithm of automatic pointer measuring devices (voltmeter, manometer, metronomes etc.) indications determination in order to determine their dynamic characteristics with the help of web-camera and personal computer. The results of test-ing and experimental research of developed tool for determining the dynamic characteristics of pointer measuring devices are given. Using this method, the algorithm and the software developed, the process of determining the dynamic characteristics of the pointer measuring devices was automated. The time of recognition and calculation of one measured value for a dual-core processor and webcam with a resolution of 0.3 Mp averages 250–330 ms.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"29 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86468378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-criteria optimization of the parameters of PSS3B system stabilizers operating in an extended power system with the use of a genetic algorithm","authors":"A. Nocoń, P. Pruski","doi":"10.24425/acs.2022.141711","DOIUrl":"https://doi.org/10.24425/acs.2022.141711","url":null,"abstract":"In the paper, the application of multi-criteria optimization of the parameters of PSS3B system stabilizers to damping electromechanical swings in an extended power system (PS) is presented. The calculations of the power system stabilizer (PSS) parameters were divided into two stages. In the first stage, single-machine systems, generating unit – infinite bus, of generating units critical for the angular stability of the PS were analyzed. Time constants and preliminary values of the PSS gains were calculated. In the second stage, the main one, the main gains on which the effectiveness of operation of PSSs depends the most were calculated by multi-criteria optimization of the extended PS. The calculations were carried out in several variants: for two-dimensional objective functions and the six-dimensional objective function. In multi-criteria optimization, the solution is not one set of PSS parameters, but a set of sets of these parameters, i.e. a set of compromises that were determined for each analyzed case. Additionally, for the six-dimensional compromise set, projections of this set on the planes connected withthe quantitiesof individual generatingunits and theboundary ofthese projections on these planes were determined. A genetic algorithm adapted to multi-criteria issues was used to minimize the multivariate objective function. Sample calculations were made for the model of the National (Polish) Power System taking into account 57 selected generating units operating in high and extra high voltage networks (220 and 400 kV). The presented calculations show that the applied multi-criteria optimization of the PSS3B stabilizer parameters allows effectively damping electromechanical swings without worsening the voltage waveforms of generating units in the extended PS.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"53 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84495001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability analysis of engineering/physical dynamic systems using residual energy function","authors":"Cim Civelek","doi":"10.24425/123456","DOIUrl":"https://doi.org/10.24425/123456","url":null,"abstract":"In this article, an engineering/physical dynamic system including losses is analyzed in relation to the stability from an engineer’s/physicist’s point of view. Firstly, conditions for a Hamiltonian to be an energy function, time independent or not, is explained herein. To analyze stability of engineering system, Lyapunov-like energy function, called residual energy function is used. The residual function may contain, apart from external energies, negative losses as well. This function includes the sum of potential and kinetic energies, which are special forms and ready-made (weak) Lyapunov functions, and loss of energies (positive and/or negative) of a system described in different forms using tensorial variables. As the Lypunov function, residual energy function is defined as Hamiltonian energy function plus loss of energies and then associated weak and strong stability are proved through the first time-derivative of residual energy function. It is demonstrated how the stability analysis can be performed using the residual energy functions in different formulations and in generalized motion space when available. This novel approach is applied to RLC circuit, AC equivalent circuit of Gunn diode oscillator for autonomous, and a coupled (electromechanical) example for nonautonomous case. In the nonautonomous case, the stability criteria can not be proven for one type of formulation, however, it can be proven in the other type formulation.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"85 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89033933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractional order PI λD μ controller with optimal parameters using Modified Grey Wolf Optimizer for AVR system","authors":"Santosh Kumar, R. Devarapalli","doi":"10.24425/acs.2022.141719","DOIUrl":"https://doi.org/10.24425/acs.2022.141719","url":null,"abstract":"In this paper, an automatic voltage regulator (AVR) embedded with fractional order PID (FOPID) is employed for the alternator terminal voltage control. A novel meta-heuristic technique, a modified version of grey wolf optimizer (mGWO) is proposed to design and optimize the FOPID AVR system. The parameters of FOPID, namely, proportional gain ( 𝐾 𝑃 ) , the integral gain ( 𝐾 𝐼 ) , the derivative gain ( 𝐾 𝐷 ) , 𝜆 and 𝜇 have been optimally tuned with the proposed mGWO technique using a novel fitness function. The initial values of the 𝐾 𝑃 , 𝐾 𝐼 , and 𝐾 𝐷 of the FOPID controller are obtained using Ziegler-Nichols (ZN) method, whereas the initial values of 𝜆 and 𝜇 have been chosen as arbitrary values.The proposed algorithm offers more benefits such as easy implementation, fast convergence characteristics, and excellent computational ability for the optimization of functions with more than three variables. Additionally, the hasty tuning of FOPID controller parameters gives a high-quality result, and the proposed controller also improves the robustness of the system during uncertainties in the parameters. The quality of the simulated result of the proposed controller has been validatedby other state-of-the-art techniques in the literature.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"69 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89342791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An output sensitivity problem for a class of linear distributed systems with uncertain initial state","authors":"S. B. Rhila, M. Rachik, A. Tridane","doi":"10.24425/acs.2020.132589","DOIUrl":"https://doi.org/10.24425/acs.2020.132589","url":null,"abstract":"In this paper, we consider an infinite dimensional linear systems. It is assumed that the initial state of system is not known throughout all the domain Ω (cid:26) R n , the initial state x 0 2 L 2 ( Ω ) is supposed known on one part of the domain Ω and uncertain on the rest. That means Ω = ! 1 [ ! 2 [ : : : [ ! t with ! i ! j = ∅ , 8 i ; j 2 f 1 ; : : :; t g , i , j where ! i , ∅ and x 0 ( (cid:18) ) = (cid:11) i for (cid:18) 2 ! i , 8 i , i.e., x 0 ( (cid:18) ) = t ∑ i = 1 (cid:11) i 1 ! i ( (cid:18) ) where the values (cid:11) 1 ; : : :; (cid:11) r are supposed known and (cid:11) r + 1 ; : : :; (cid:11) t unknown and 1 ! i is the indicator function. The uncertain part ( (cid:11) 1 ; : : :; (cid:11) r ) of the initial state x 0 is said to be ( \" 1 ; : : :; \" r ) -admissible if the sensitivity of corresponding output signal ( y i ) i 0 relatively to uncertainties ( (cid:11) k ) 1 ¬ k ¬ r is less to the treshold \" k , i.e., (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) @ y i @(cid:11) k (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) ¬ \" k , 8 i 0, 8 k 2 f 1 ; : : :; r g . The main goal of this paper is to determine the set of all possible gain operators that makes the system insensitive to all uncertainties. The characterization of this set is investigated and an algorithmic determination of each gain operators is presented. Some examples are given.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"30 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91318862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the region of attraction of dynamical systems: Application to Lorenz equations","authors":"M. Hammami, N. H. Rettab","doi":"10.24425/ACS.2020.134671","DOIUrl":"https://doi.org/10.24425/ACS.2020.134671","url":null,"abstract":"Many nonlinear dynamical systems can present a challenge for the stability analysis in particular the estimation of the region of attraction of an equilibrium point. The usual method is based on Lyapunov techniques. For the validity of the analysis it should be supposed that the initial conditions lie in the domain of attraction. In this paper, we investigate such problem for a class of dynamical systems where the origin is not necessarily an equilibrium point. In this case, a small compact neighborhood of the origin can be estimated as an attractor for the system. We give a method to estimate the basin of attraction based on the construction of a suitable Lyapunov function. Furthermore, an application to Lorenz system is given to verify the effectiveness of the proposed method.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77598063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation control of underwater vehicles using Multi Agent System","authors":"Dr. Bikramaditya Das, B. B. Pati","doi":"10.24425/acs.2020.133503","DOIUrl":"https://doi.org/10.24425/acs.2020.133503","url":null,"abstract":"This paper proposes the development of a formation control algorithm of multiple acoustic underwater vehicles by employing the behaviour of autonomous mobile agents under a proposed pursuit. A robust pursuit is developed using the distributed consensus coordinated algorithm ensuring the transfer of information among the AUVs. The development of robust pursuit based on characteristics of multi-agent system is for solving the incomplete information capabilities in each agent such as asynchronous computation, decentralized data and no system global control. In unreliable and narrow banded underwater acoustic medium, the formation of AUVs based distributed coordinated consensus tracking can be accomplished under the constant or varying virtual leader’s velocity. Further, the study to achieve tracking based on virtual leader AUV’s velocity is extended to fixed and switching network topologies. Again for mild connectivity, an adjacency matrix is defined in such a way that an adaptive connectivity is ensured between the AUVs. The constant virtual leader vehicle velocity method based on consensus tracking is more robust to reduce inaccuracy because no accurate position and velocity measurements are required. Results were obtained using MATLAB and acquired outcomes are analysed for efficient formation control in presence of the underwater communication constraints.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"16 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75282012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Control of complex dynamic nonlinear loading process for electromagnetic mill","authors":"S. Ogonowski, D. Bismor","doi":"10.24425/acs.2020.134674","DOIUrl":"https://doi.org/10.24425/acs.2020.134674","url":null,"abstract":"Electromagnetic mill installation for dry grinding represents a complex dynamical system that requires specially designed control system. The paper presents model-based predictive control which locates closed loop poles in arbitrary places. The controller performs as gain scheduling prototype where nonlinear model – artificial recurrent neural network, is parameterized with additional measurements and serves as a basis for local linear approximation. Application of such a concept to control electromagnetic mill load allows for stable performance of the installation and assures fulfilment of the product quality as well as the optimization of the energy consumption.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"29 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84587390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preview Control applied for humanoid robot motion generation","authors":"Maksymilian Szumowski, M. Zurawska, T. Zielińska","doi":"10.24425/ACS.2019.127526","DOIUrl":"https://doi.org/10.24425/ACS.2019.127526","url":null,"abstract":"This paper presents a concept of humanoid robot motion generation using the dedicated simplified dynamic model of the robot (Extended Cart-Table model). Humanoid robot gait with equal steps length is considered. Motion pattern is obtained here with use of Preview Control method. Motion trajectories are first obtained in simulations (off-line) and then they are verified on a test-bed. Tests performed using the real robot confirmed the correctness of the method. Robot completed a set of steps without losing its balance.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"63 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84766454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of dual hesitant fuzzy prioritized operators based on Einstein operations with their application to multi-criteria group decision making","authors":"A. Biswas, A. Sarkar","doi":"10.24425/ACS.2018.125482","DOIUrl":"https://doi.org/10.24425/ACS.2018.125482","url":null,"abstract":"","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"47 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82608593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}