一类初始状态不确定的线性分布式系统的输出灵敏度问题

IF 1.2 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
S. B. Rhila, M. Rachik, A. Tridane
{"title":"一类初始状态不确定的线性分布式系统的输出灵敏度问题","authors":"S. B. Rhila, M. Rachik, A. Tridane","doi":"10.24425/acs.2020.132589","DOIUrl":null,"url":null,"abstract":"In this paper, we consider an infinite dimensional linear systems. It is assumed that the initial state of system is not known throughout all the domain Ω (cid:26) R n , the initial state x 0 2 L 2 ( Ω ) is supposed known on one part of the domain Ω and uncertain on the rest. That means Ω = ! 1 [ ! 2 [ : : : [ ! t with ! i \\ ! j = ∅ , 8 i ; j 2 f 1 ; : : :; t g , i , j where ! i , ∅ and x 0 ( (cid:18) ) = (cid:11) i for (cid:18) 2 ! i , 8 i , i.e., x 0 ( (cid:18) ) = t ∑ i = 1 (cid:11) i 1 ! i ( (cid:18) ) where the values (cid:11) 1 ; : : :; (cid:11) r are supposed known and (cid:11) r + 1 ; : : :; (cid:11) t unknown and 1 ! i is the indicator function. The uncertain part ( (cid:11) 1 ; : : :; (cid:11) r ) of the initial state x 0 is said to be ( \" 1 ; : : :; \" r ) -admissible if the sensitivity of corresponding output signal ( y i ) i 0 relatively to uncertainties ( (cid:11) k ) 1 ¬ k ¬ r is less to the treshold \" k , i.e., (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) @ y i @(cid:11) k (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) ¬ \" k , 8 i 0, 8 k 2 f 1 ; : : :; r g . The main goal of this paper is to determine the set of all possible gain operators that makes the system insensitive to all uncertainties. The characterization of this set is investigated and an algorithmic determination of each gain operators is presented. Some examples are given.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"30 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An output sensitivity problem for a class of linear distributed systems with uncertain initial state\",\"authors\":\"S. B. Rhila, M. Rachik, A. Tridane\",\"doi\":\"10.24425/acs.2020.132589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider an infinite dimensional linear systems. It is assumed that the initial state of system is not known throughout all the domain Ω (cid:26) R n , the initial state x 0 2 L 2 ( Ω ) is supposed known on one part of the domain Ω and uncertain on the rest. That means Ω = ! 1 [ ! 2 [ : : : [ ! t with ! i \\\\ ! j = ∅ , 8 i ; j 2 f 1 ; : : :; t g , i , j where ! i , ∅ and x 0 ( (cid:18) ) = (cid:11) i for (cid:18) 2 ! i , 8 i , i.e., x 0 ( (cid:18) ) = t ∑ i = 1 (cid:11) i 1 ! i ( (cid:18) ) where the values (cid:11) 1 ; : : :; (cid:11) r are supposed known and (cid:11) r + 1 ; : : :; (cid:11) t unknown and 1 ! i is the indicator function. The uncertain part ( (cid:11) 1 ; : : :; (cid:11) r ) of the initial state x 0 is said to be ( \\\" 1 ; : : :; \\\" r ) -admissible if the sensitivity of corresponding output signal ( y i ) i 0 relatively to uncertainties ( (cid:11) k ) 1 ¬ k ¬ r is less to the treshold \\\" k , i.e., (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) @ y i @(cid:11) k (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) ¬ \\\" k , 8 i 0, 8 k 2 f 1 ; : : :; r g . The main goal of this paper is to determine the set of all possible gain operators that makes the system insensitive to all uncertainties. The characterization of this set is investigated and an algorithmic determination of each gain operators is presented. Some examples are given.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24425/acs.2020.132589\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2020.132589","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

本文考虑一类无限维线性系统。假设系统的初始状态在整个域Ω (cid:26) R n未知,初始状态x2 l2 (Ω)在域Ω的一部分已知,在其余部分不确定。这意味着Ω = !1 [!]2 [:::] !T with !我!J =∅,8 I;J 2 f 1;:::;我,我,我在哪里!I,∅and x 0 ((cid:18)) = (cid:11) I for (cid:18) 2 !I, 8 I,即x 0 ((cid:18)) = t∑I = 1 (cid:11) I 1 !I ((cid:18)),其中值(cid:11) 1;:::;假设(cid:11) r是已知的,(cid:11) r + 1;:::;(cid:11) t未知和1 !I是指示函数。不确定部分((cid:11) 1;:::;(cid:11) r)初始状态x 0的值为(" 1;:::;如果相应的输出信号(y I) I 0相对于不确定性((cid:11) k) k的灵敏度小于阈值k,即(cid:13)(cid:13)(cid:13)(cid:13)(cid:13) (cid:13)(cid:13)(cid:13) @ y I @(cid:11) k (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) (cid:13)(cid:13) - k, 8 I 0,8 k 2 f 1;:::;R g。本文的主要目标是确定使系统对所有不确定性不敏感的所有可能增益算子的集合。研究了该增益集的特征,并给出了一种确定增益算子的算法。给出了一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An output sensitivity problem for a class of linear distributed systems with uncertain initial state
In this paper, we consider an infinite dimensional linear systems. It is assumed that the initial state of system is not known throughout all the domain Ω (cid:26) R n , the initial state x 0 2 L 2 ( Ω ) is supposed known on one part of the domain Ω and uncertain on the rest. That means Ω = ! 1 [ ! 2 [ : : : [ ! t with ! i \ ! j = ∅ , 8 i ; j 2 f 1 ; : : :; t g , i , j where ! i , ∅ and x 0 ( (cid:18) ) = (cid:11) i for (cid:18) 2 ! i , 8 i , i.e., x 0 ( (cid:18) ) = t ∑ i = 1 (cid:11) i 1 ! i ( (cid:18) ) where the values (cid:11) 1 ; : : :; (cid:11) r are supposed known and (cid:11) r + 1 ; : : :; (cid:11) t unknown and 1 ! i is the indicator function. The uncertain part ( (cid:11) 1 ; : : :; (cid:11) r ) of the initial state x 0 is said to be ( " 1 ; : : :; " r ) -admissible if the sensitivity of corresponding output signal ( y i ) i 0 relatively to uncertainties ( (cid:11) k ) 1 ¬ k ¬ r is less to the treshold " k , i.e., (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) @ y i @(cid:11) k (cid:13)(cid:13)(cid:13)(cid:13)(cid:13) ¬ " k , 8 i 0, 8 k 2 f 1 ; : : :; r g . The main goal of this paper is to determine the set of all possible gain operators that makes the system insensitive to all uncertainties. The characterization of this set is investigated and an algorithmic determination of each gain operators is presented. Some examples are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Control Sciences
Archives of Control Sciences Mathematics-Modeling and Simulation
CiteScore
2.40
自引率
33.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信