论动力系统的吸引域:在洛伦兹方程中的应用

IF 1.2 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
M. Hammami, N. H. Rettab
{"title":"论动力系统的吸引域:在洛伦兹方程中的应用","authors":"M. Hammami, N. H. Rettab","doi":"10.24425/ACS.2020.134671","DOIUrl":null,"url":null,"abstract":"Many nonlinear dynamical systems can present a challenge for the stability analysis in particular the estimation of the region of attraction of an equilibrium point. The usual method is based on Lyapunov techniques. For the validity of the analysis it should be supposed that the initial conditions lie in the domain of attraction. In this paper, we investigate such problem for a class of dynamical systems where the origin is not necessarily an equilibrium point. In this case, a small compact neighborhood of the origin can be estimated as an attractor for the system. We give a method to estimate the basin of attraction based on the construction of a suitable Lyapunov function. Furthermore, an application to Lorenz system is given to verify the effectiveness of the proposed method.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"52 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the region of attraction of dynamical systems: Application to Lorenz equations\",\"authors\":\"M. Hammami, N. H. Rettab\",\"doi\":\"10.24425/ACS.2020.134671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many nonlinear dynamical systems can present a challenge for the stability analysis in particular the estimation of the region of attraction of an equilibrium point. The usual method is based on Lyapunov techniques. For the validity of the analysis it should be supposed that the initial conditions lie in the domain of attraction. In this paper, we investigate such problem for a class of dynamical systems where the origin is not necessarily an equilibrium point. In this case, a small compact neighborhood of the origin can be estimated as an attractor for the system. We give a method to estimate the basin of attraction based on the construction of a suitable Lyapunov function. Furthermore, an application to Lorenz system is given to verify the effectiveness of the proposed method.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24425/ACS.2020.134671\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/ACS.2020.134671","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

许多非线性动力系统的稳定性分析,特别是平衡点吸引区域的估计,给稳定性分析带来了挑战。通常的方法是基于李亚普诺夫技术。为了分析的有效性,应该假定初始条件位于吸引力领域。本文研究了一类原点不一定是平衡点的动力系统的这类问题。在这种情况下,可以估计出原点的一个小紧邻域作为系统的吸引子。在构造合适的李雅普诺夫函数的基础上,给出了一种估计引力盆地的方法。最后,以Lorenz系统为例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the region of attraction of dynamical systems: Application to Lorenz equations
Many nonlinear dynamical systems can present a challenge for the stability analysis in particular the estimation of the region of attraction of an equilibrium point. The usual method is based on Lyapunov techniques. For the validity of the analysis it should be supposed that the initial conditions lie in the domain of attraction. In this paper, we investigate such problem for a class of dynamical systems where the origin is not necessarily an equilibrium point. In this case, a small compact neighborhood of the origin can be estimated as an attractor for the system. We give a method to estimate the basin of attraction based on the construction of a suitable Lyapunov function. Furthermore, an application to Lorenz system is given to verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Control Sciences
Archives of Control Sciences Mathematics-Modeling and Simulation
CiteScore
2.40
自引率
33.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信