ActuatorsPub Date : 2024-01-04DOI: 10.3390/act13010019
Weijun Yang, Shizhuan Zou, Liang Li, Kai Huang, Guanyu Lai
{"title":"Direct Adaptive Fuzzy Control with Prescribed Tracking Accuracy for Orbit Adjustment of Satellites","authors":"Weijun Yang, Shizhuan Zou, Liang Li, Kai Huang, Guanyu Lai","doi":"10.3390/act13010019","DOIUrl":"https://doi.org/10.3390/act13010019","url":null,"abstract":"In this paper, we investigate the orbit-adjustment problem of satellite systems in the presence of nonlinear uncertainties in kinematics and dynamics. We propose a novel direct adaptive fuzzy control scheme with prescribed tracking accuracy to address uncertain nonlinear dynamics by employing advanced fuzzy logic systems and integrating a class of sophisticated smooth functions, thereby ensuring convergence of the tracking error within a precisely defined interval. The ingeniously designed control scheme guarantees negative semi-definiteness of the Lyapunov function, ensuring boundedness for all variables. Moreover, our groundbreaking control approach requires only one adaptive law, completely eliminating any direct correlation with the number of nonlinear functions. Simulation results unequivocally validate the remarkable effectiveness and superiority of our innovative control approach.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"63 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ActuatorsPub Date : 2024-01-02DOI: 10.3390/act13010018
Zhenzhuo Yan, Hongwei Ji, Qing Chang
{"title":"Energy Consumption Minimization of Quadruped Robot Based on Reinforcement Learning of DDPG Algorithm","authors":"Zhenzhuo Yan, Hongwei Ji, Qing Chang","doi":"10.3390/act13010018","DOIUrl":"https://doi.org/10.3390/act13010018","url":null,"abstract":"Energy consumption is one of the most critical factors in determining the kinematic performance of quadruped robots. However, existing research methods often encounter challenges in quickly and efficiently reducing the energy consumption associated with quadrupedal robotic locomotion. In this paper, the deep deterministic policy gradient (DDPG) algorithm was used to optimize the energy consumption of the Cyber Dog quadruped robot. Firstly, the kinematic and energy consumption models of the robot were established. Secondly, energy consumption was optimized by reinforcement learning using the DDPG algorithm. The optimized plantar trajectory was then compared with two common plantar trajectories in simulation experiments, with the same period and the number of synchronizations but varying velocities. Lastly, real experiments were conducted using a prototype machine to validate the simulation data. The analysis results show that, under the same conditions, the proposed method can reduce energy consumption by 7~9% compared with the existing optimal trajectory methods.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"19 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139452092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ActuatorsPub Date : 2024-01-01DOI: 10.3390/act13010017
Yao Meng, Xinyu Yang, Haitao Wang, Xingzhen Bai
{"title":"Design and Analysis of a New Dual-Stator Hybrid Magnet Flux Modulation Machine","authors":"Yao Meng, Xinyu Yang, Haitao Wang, Xingzhen Bai","doi":"10.3390/act13010017","DOIUrl":"https://doi.org/10.3390/act13010017","url":null,"abstract":"This paper proposes a new dual-stator hybrid-magnet flux modulation machine (DS-FMHMM) for direct-drive applications, which employs NdFeB magnet excitation and Ferrite magnet excitation on the rotor and outer stator sides, respectively. With this design, the proposed DS-FMHMM can not only fully use the bidirectional flux modulation effect, but also effectively alleviate the magnetic saturation issue. The machine configuration is described, together with the operating principle. Then, the design parameters of DS-FMHMM are globally optimized for obtaining high torque quality, and the influence of magnet dimensions on torque is analyzed. To evaluate the merits of the proposed DS-FMHMM, the electromagnetic performances of machines under different magnet excitation sources are analyzed, and a comprehensive electromagnetic performance comparison of DS-FMHMM and two existing dual-stator flux modulation machines (DSFMMs) is developed.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"87 9","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139125124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ActuatorsPub Date : 2023-12-31DOI: 10.3390/act13010016
Weipeng Zhang, Suchun Liu, Yuxi Ji, Shengbo Gao, Bo Zhao, Liming Zhou, Ping Xie, Xinhai Jin, Zhaomei Qiu, Yanwu Ma
{"title":"Optimization Design and Experiment of High-Speed Drag-Reducing Trencher Based on Conservation Tillage","authors":"Weipeng Zhang, Suchun Liu, Yuxi Ji, Shengbo Gao, Bo Zhao, Liming Zhou, Ping Xie, Xinhai Jin, Zhaomei Qiu, Yanwu Ma","doi":"10.3390/act13010016","DOIUrl":"https://doi.org/10.3390/act13010016","url":null,"abstract":"In the realm of high-speed precision broadcasting, the existing seeder opener proves inadequate for the speed of the seeding operation. We focus on the duckbill opener and employ the quadratic regression orthogonal rotation combination test design method to optimize the structural parameters of the opener. Throughout the experiment, the primary performance metrics encompassed the opener’s working resistance and the side dumping distance. The selected experimental factors comprised the penetration angle, the angle of soil entry gap, the shovel body width, and the shovel length. The optimal arrangement of structural parameters has been determined: a penetration angle, a soil entry gap angle, a shovel body width of 21 mm, and a shovel length of 142 mm. These parameters contribute to increased velocity, reduced operational resistance, and minimal soil disturbance. Under this combination, the relative deviations between the recorded measurements and the theoretical outcomes for working resistance and the side dumping distance stand at 4.24% and 1.06%, respectively; these confirm the credibility of the optimization results. We performed adaptability testing and conducted a comparative analysis under various operational conditions to assess the innovative opener’s ability to reduce force, minimize soil disruption, and maintain depth stability. The findings are as follows: At a depth of 5 cm and velocities ranging from 6 km/h to 8 km/h, an average working resistance reduction of 19.73%, a 5.64% decrease in the side dumping distance, and an average depth stability of 89.5% were observed. When operated at a speed of 7 km/h with a depth ranging from 3 cm to 5 cm, an average reduction of 19.66% in operational resistance, a 2.59% decrease in the side dumping distance, and an average depth stability of 91.1% were recorded. These results illustrate the innovative opener’s capacity to significantly reduce working resistance and side dumping distance while satisfying the depth stability requisites.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"81 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139132188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ActuatorsPub Date : 2023-12-30DOI: 10.3390/act13010015
Davide Consolati, Paolo Marmaglio, Lorenzo Canziani, M. Tiboni, C. Amici
{"title":"Electric Actuation of Transport Vehicles: Overview of Technical Characteristics and Propulsion Solutions through a Systematic Patent Analysis","authors":"Davide Consolati, Paolo Marmaglio, Lorenzo Canziani, M. Tiboni, C. Amici","doi":"10.3390/act13010015","DOIUrl":"https://doi.org/10.3390/act13010015","url":null,"abstract":"Electric transport vehicles offer sustainable transportation solutions with benefits, such as reduced emissions, noise, and operating costs. This paper draws an overview of the available technical solutions to actuate transport vehicles with electric drives, as depicted by patent literature. A dataset of 1784 patents was created; the documents were selected through a systematic approach, and the patents were then classified according to a number of user-defined categories. The dataset was analyzed by applying two different methods: (i) a quantitative analysis (literature overview), enabling glance evaluations about the defined categories, and (ii) a qualitative analysis (detailed analysis), which focuses on the detection of interesting design features or innovative solutions. The results of this work not only provide an alternative and complementary overview to the analysis of solutions that may emerge from a scientific literature review, but can also offer support in strategic planning to companies wishing to protect their innovations and remain competitive in the evolving market of transport vehicles.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":" 36","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139137464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ActuatorsPub Date : 2023-12-29DOI: 10.3390/act13010013
Gilsu Choi, Gwan-Hui Jang, Mingyu Choi, Jungmoon Kang, Ye Gu Kang, Sehwan Kim
{"title":"Optimal Design of a Surface Permanent Magnet Machine for Electric Power Steering Systems in Electric Vehicle Applications Using a Gaussian Process-Based Approach","authors":"Gilsu Choi, Gwan-Hui Jang, Mingyu Choi, Jungmoon Kang, Ye Gu Kang, Sehwan Kim","doi":"10.3390/act13010013","DOIUrl":"https://doi.org/10.3390/act13010013","url":null,"abstract":"The efficient design optimization of electric machines for electric power steering (EPS) applications poses challenges in meeting demanding performance criteria, including high power density, efficiency, and low vibration. Traditional optimization approaches often fail to find a global solution or suffer from excessive computation time. In response to the limitations of traditional approaches, this paper introduces a novel methodology by incorporating a Gaussian process-based adaptive sampling technique into a surrogate-assisted optimization process using a metaheuristic algorithm. Validation on a 72-slot/8-pole interior permanent magnet (IPM) machine demonstrates the superiority of the proposed approach, showcasing improved exploitation–exploration balance, faster convergence, and enhanced repeatability compared to conventional optimization methods. The proposed design process is then applied to two surface PM (SPM) machine configurations with 9-slot/6-pole and 12-slot/10-pole combinations for EPS applications. The results indicate that the 12-slot/10-pole SPM design surpasses the alternative design in torque density, efficiency, cogging torque, torque ripple, and manufacturability.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":" 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Error Flow for Hydraulic System Simulation Models for Construction Machinery Based on the State-Space Approach","authors":"Deying Su, Hongyan Rao, Shaojie Wang, Yongjun Pan, Yubing Xu, Liang Hou","doi":"10.3390/act13010014","DOIUrl":"https://doi.org/10.3390/act13010014","url":null,"abstract":"This study presents an error flow research method for simulation models of hydraulic systems in construction machinery based on the state-space approach, aiming to ensure the reliable application of digital twin models. Initially, a comprehensive analysis of errors in the simulation modeling of hydraulic systems in construction machinery was conducted, highlighting simulation model parameters as the primary error sources. Subsequently, a set of metrics for assessing the accuracy of simulation models was developed. Following this, an error flow analysis method for simulation models of hydraulic systems in construction machinery was explored based on the state space approach, delving into the sources, transmission, and accumulation of errors in the simulation modeling of valve-controlled cylinder systems. The research results unequivocally indicate that the spring stiffness, viscous damping coefficient, and hydraulic cylinder external leakage coefficient are critical parameters affecting the accuracy of valve-controlled cylinder system simulation models. Furthermore, it was observed that the simulation model of the control valve has a significantly greater impact on the errors in the valve-controlled cylinder system simulation model than the hydraulic cylinder model. In conclusion, the reliability of the error flow model was confirmed through simulation experiments, revealing a maximum relative error of only 3.73% between the error flow model and the results of the simulation experiments.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":" 15","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139144348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ActuatorsPub Date : 2023-12-28DOI: 10.3390/act13010011
Fangping Ye, Xinyi Xue, Weijie Jiang, Xiyan Yin
{"title":"Mechanism and Experimental Investigation of Vibration Reduction for Container Cranes Based on Particle Damping Technology","authors":"Fangping Ye, Xinyi Xue, Weijie Jiang, Xiyan Yin","doi":"10.3390/act13010011","DOIUrl":"https://doi.org/10.3390/act13010011","url":null,"abstract":"Container cranes have been widely used for port operation. However, the structure of the port container crane is large, which always leads to crane damage under vibration and strong wind. Therefore, a method for vibration reduction of container crane structure based on particle damping technology is proposed. In this investigation, the scale 1:80 crane model is built, and the equivalent mechanical model is also established to preliminarily verify the effect of vibration suppression. Furthermore, the dependence of vibration suppression effect on the key parameters of the damper, i.e., filling material, filling rate, particle size, and installation position of dampers are analyzed through experiments. The results indicate that the vibration peak of the crane structure displayed in the Simulink oscilloscope is weakened and lags behind, the installation of the damper brings the effect of vibration suppression for the crane, and the vibration suppression effect reaches 25%; the crane mode obtains the best vibration suppression effect under the condition that the material filled in the damper has a large density and elastic modulus, sufficient collision space and high collision frequency, and the dampers are installed far away from the crane center of gravity. The optimum parameters of the damper obtained from experiments were 12 mm lead beads, a filling rate of 60%, installed in the distal ends within the strength range of the forearm of the crane. It is thus concluded that particle damping technology has provided an effective way of wind and vibration reduction for container cranes.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"31 7","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139151544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ActuatorsPub Date : 2023-12-28DOI: 10.3390/act13010012
F. Durante, T. Raparelli, P. Beomonte Zobel
{"title":"Man-Power-Amplifying Exoskeleton with Pneumatic Actuator","authors":"F. Durante, T. Raparelli, P. Beomonte Zobel","doi":"10.3390/act13010012","DOIUrl":"https://doi.org/10.3390/act13010012","url":null,"abstract":"This study describes the activity of developing a force amplifier exoskeleton with one degree of freedom. The system was developed as a research prototype to conduct control system studies. The device consists of an arm with a pneumatic cylinder actuator controlled by a pressure regulator. As for the human–machine interface, the system has a force sensor. The idea is to verify the possibility of developing a simple system from the sensor system’s point of view and the control system’s architecture while simultaneously obtaining an effective, economical, and reliable device. The idea developed in this project is to use the user’s available ability to control movements in unknown environments. The user constitutes the central part of the entire control system: he defines the references for the speeds and forces to be applied to the environment and observes the rates of the controlled robotic system through his own sight and proprioceptive system. On the other hand, the machine produces and controls the forces applied to the environment by the actuator. In this way, the device shows an increased admittance. A mathematical system model was created to verify the idea’s feasibility. Following the results of the simulations, a prototype was built on which experimental tests were carried out. As stated above, it was possible to obtain the described behavior with the use of a force sensor, one-axis type, interposed between the machine and the user, to constitute the human–machine interface; using a pressure regulator, it was possible to avoid the sensors for the force feedback by the environment. The result is a simple architecture for the sensors and the control algorithm. Specific test protocols were proposed to test the performance of the human–machine “system”, and a test bench was developed that allows the tracking of variable signals represented on a monitor, which the user must follow. The system is intuitive to use, with a rapid learning curve, and the user can handle high loads according to the different signals to be followed with good precision, even at high speeds.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"298 7","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139152501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vibration Damping and Noise Reduction of a New Non-Newtonian Fluid Damper in a Washing Machine","authors":"Yuanjin Song, Zhuang Zhong, Xianping Wang, Qianfeng Fang, Zhijun Cheng, Tao Zhang","doi":"10.3390/act13010009","DOIUrl":"https://doi.org/10.3390/act13010009","url":null,"abstract":"Due to friction vibration dampers’ inability to effectively dampen low loads during high-frequency dewatering, drum washing machines vibrated intensively. In order to address this problem, in this paper, a novel type of low-cost non-Newtonian fluid damper is proposed and investigated based on the non-Newtonian fluid shear thinning properties’ effect on vibration suppression during the high-frequency dewatering process of the washing machine. In contrast to other commonly used dampers, the homemade non-Newtonian fluid damper significantly suppresses the growth trend of the apparent elastic coefficient at high frequencies. A systematic investigation of damper structural parameters reveals that smaller gap height, higher piston head number, and more viscous fluid viscosity are adequate for vibration suppression and noise reduction. These results demonstrate that the non-Newtonian fluid damper can produce an excellent vibration-damping effect for the entire washing process of the washing machine, especially for the high-frequency dewatering process. The acceleration attenuation ratio can reach up to 83.49%, the energy attenuation is up to 98.44%, and the noise reduction is up to 10.38 dB.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"6 8","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}