{"title":"新型双定子混合磁通调制器的设计与分析","authors":"Yao Meng, Xinyu Yang, Haitao Wang, Xingzhen Bai","doi":"10.3390/act13010017","DOIUrl":null,"url":null,"abstract":"This paper proposes a new dual-stator hybrid-magnet flux modulation machine (DS-FMHMM) for direct-drive applications, which employs NdFeB magnet excitation and Ferrite magnet excitation on the rotor and outer stator sides, respectively. With this design, the proposed DS-FMHMM can not only fully use the bidirectional flux modulation effect, but also effectively alleviate the magnetic saturation issue. The machine configuration is described, together with the operating principle. Then, the design parameters of DS-FMHMM are globally optimized for obtaining high torque quality, and the influence of magnet dimensions on torque is analyzed. To evaluate the merits of the proposed DS-FMHMM, the electromagnetic performances of machines under different magnet excitation sources are analyzed, and a comprehensive electromagnetic performance comparison of DS-FMHMM and two existing dual-stator flux modulation machines (DSFMMs) is developed.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"87 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of a New Dual-Stator Hybrid Magnet Flux Modulation Machine\",\"authors\":\"Yao Meng, Xinyu Yang, Haitao Wang, Xingzhen Bai\",\"doi\":\"10.3390/act13010017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new dual-stator hybrid-magnet flux modulation machine (DS-FMHMM) for direct-drive applications, which employs NdFeB magnet excitation and Ferrite magnet excitation on the rotor and outer stator sides, respectively. With this design, the proposed DS-FMHMM can not only fully use the bidirectional flux modulation effect, but also effectively alleviate the magnetic saturation issue. The machine configuration is described, together with the operating principle. Then, the design parameters of DS-FMHMM are globally optimized for obtaining high torque quality, and the influence of magnet dimensions on torque is analyzed. To evaluate the merits of the proposed DS-FMHMM, the electromagnetic performances of machines under different magnet excitation sources are analyzed, and a comprehensive electromagnetic performance comparison of DS-FMHMM and two existing dual-stator flux modulation machines (DSFMMs) is developed.\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":\"87 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/act13010017\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13010017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Design and Analysis of a New Dual-Stator Hybrid Magnet Flux Modulation Machine
This paper proposes a new dual-stator hybrid-magnet flux modulation machine (DS-FMHMM) for direct-drive applications, which employs NdFeB magnet excitation and Ferrite magnet excitation on the rotor and outer stator sides, respectively. With this design, the proposed DS-FMHMM can not only fully use the bidirectional flux modulation effect, but also effectively alleviate the magnetic saturation issue. The machine configuration is described, together with the operating principle. Then, the design parameters of DS-FMHMM are globally optimized for obtaining high torque quality, and the influence of magnet dimensions on torque is analyzed. To evaluate the merits of the proposed DS-FMHMM, the electromagnetic performances of machines under different magnet excitation sources are analyzed, and a comprehensive electromagnetic performance comparison of DS-FMHMM and two existing dual-stator flux modulation machines (DSFMMs) is developed.
期刊介绍:
Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.