Environmental Microbiome最新文献

筛选
英文 中文
Microbiome changes through the ontogeny of the marine sponge Crambe crambe. 海洋海绵 Crambe crambe 在整个生长过程中微生物组的变化。
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-03-11 DOI: 10.1186/s40793-024-00556-7
Marta Turon, Madeline Ford, Manuel Maldonado, Cèlia Sitjà, Ana Riesgo, Cristina Díez-Vives
{"title":"Microbiome changes through the ontogeny of the marine sponge Crambe crambe.","authors":"Marta Turon, Madeline Ford, Manuel Maldonado, Cèlia Sitjà, Ana Riesgo, Cristina Díez-Vives","doi":"10.1186/s40793-024-00556-7","DOIUrl":"10.1186/s40793-024-00556-7","url":null,"abstract":"<p><strong>Background: </strong>Poriferans (sponges) are highly adaptable organisms that can thrive in diverse marine and freshwater environments due, in part, to their close associations with internal microbial communities. This sponge microbiome can be acquired from the surrounding environment (horizontal acquisition) or obtained from the parents during the reproductive process through a variety of mechanisms (vertical transfer), typically resulting in the presence of symbiotic microbes throughout all stages of sponge development. How and to what extent the different components of the microbiome are transferred to the developmental stages remain poorly understood. Here, we investigated the microbiome composition of a common, low-microbial-abundance, Atlantic-Mediterranean sponge, Crambe crambe, throughout its ontogeny, including adult individuals, brooded larvae, lecithotrophic free-swimming larvae, newly settled juveniles still lacking osculum, and juveniles with a functional osculum for filter feeding.</p><p><strong>Results: </strong>Using 16S rRNA gene analysis, we detected distinct microbiome compositions in each ontogenetic stage, with variations in composition, relative abundance, and diversity of microbial species. However, a particular dominant symbiont, Candidatus Beroebacter blanensis, previously described as the main symbiont of C. crambe, consistently occurred throughout all stages, an omnipresence that suggests vertical transmission from parents to offspring. This symbiont fluctuated in relative abundance across developmental stages, with pronounced prevalence in lecithotrophic stages. A major shift in microbial composition occurred as new settlers completed osculum formation and acquired filter-feeding capacity. Candidatus Beroebacter blanensis decreased significatively at this point. Microbial diversity peaked in filter-feeding stages, contrasting with the lower diversity of lecithotrophic stages. Furthermore, individual specific transmission patterns were detected, with greater microbial similarity between larvae and their respective parents compared to non-parental conspecifics.</p><p><strong>Conclusions: </strong>These findings suggest a putative vertical transmission of the dominant symbiont, which could provide some metabolic advantage to non-filtering developmental stages of C. crambe. The increase in microbiome diversity with the onset of filter-feeding stages likely reflects enhanced interaction with environmental microbes, facilitating horizontal transmission. Conversely, lower microbiome diversity in lecithotrophic stages, prior to filter feeding, suggests incomplete symbiont transfer or potential symbiont digestion. This research provides novel information on the dynamics of the microbiome through sponge ontogeny, on the strategies for symbiont acquisition at each ontogenetic stage, and on the potential importance of symbionts during larval development.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Core hyphosphere microbiota of Fusarium oxysporum f. sp. niveum. Fusarium oxysporum f. sp. niveum 的核心同温层微生物群。
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-03-09 DOI: 10.1186/s40793-024-00558-5
Vanessa E Thomas, Sanjay Antony-Babu
{"title":"Core hyphosphere microbiota of Fusarium oxysporum f. sp. niveum.","authors":"Vanessa E Thomas, Sanjay Antony-Babu","doi":"10.1186/s40793-024-00558-5","DOIUrl":"10.1186/s40793-024-00558-5","url":null,"abstract":"<p><strong>Background: </strong>Bacteria and fungi are dynamically interconnected, leading to beneficial or antagonistic relationships with plants. Within this interkingdom interaction, the microbial community directly associated with the pathogen make up the pathobiome. While the overall soil bacterial community associated with Fusarium wilt diseases has been widely examined, the specific bacterial populations that directly interact with the Fusarium wilt pathogens are yet to be discovered. In this study, we define the bacterial community associated with the hyphae of Fusarium oxysporum f. sp. niveum race 2 (FON2). Using the 16S rRNA gene metabarcoding, we describe the hyphosphere pathobiome of three isolates of FON2.</p><p><strong>Results: </strong>Our results show a core microbiome that is shared among the three tested hyphospheres. The core hyphosphere community was made up of 15 OTUs (Operational Taxonomic Units) that were associated with all three FON2 isolates. This core consisted of bacterial members of the families, Oxalobacteraceae, Propionibacteriaceae, Burkholderiaceae, Micrococcaceae, Bacillaceae, Comamonadaceae, Pseudomonadaceae and unclassified bacteria. The hyphosphere of FON2 was dominated by order Burkholderiales. While all three isolate hyphospheres were dominated by these taxa, the specific OTU differed. We also note that while the dominant OTU of one hyphosphere might not be the largest OTU for other hyphospheres, they were still present across all the three isolate hyphospheres. Additionally, in the correlation and co-occurrence analysis the most abundant OTU was negatively correlated with most of the other OTU populations within the hyphosphere.</p><p><strong>Conclusions: </strong>The study indicates a core microbiota associated with FON2. These results provide insights into the microbe-microbe dynamic of the pathogen's success and its ability to recruit a core pathobiome. Our research promotes the concept of pathogens not being lone invaders but recruits from the established host microbiome to form a pathobiome.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Niche differentiation and biogeography of Bathyarchaeia in paddy soil ecosystems: a case study in eastern China. 稻田土壤生态系统中蟹形目(Bathyarchaeia)的生态位分化和生物地理学:中国东部的一个案例研究。
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-03-01 DOI: 10.1186/s40793-024-00555-8
Xingyun Yi, Kristian Koefoed Brandt, Shudan Xue, Jingjing Peng, Yifei Wang, Meng Li, Ye Deng, Guilan Duan
{"title":"Niche differentiation and biogeography of Bathyarchaeia in paddy soil ecosystems: a case study in eastern China.","authors":"Xingyun Yi, Kristian Koefoed Brandt, Shudan Xue, Jingjing Peng, Yifei Wang, Meng Li, Ye Deng, Guilan Duan","doi":"10.1186/s40793-024-00555-8","DOIUrl":"10.1186/s40793-024-00555-8","url":null,"abstract":"<p><p>Bathyarchaeia (formerly Bathyarchaeota) is a group of highly abundant archaeal communities that play important roles in global biogeochemical cycling. Bathyarchaeia is predominantly found in sediments and hot springs. However, their presence in arable soils is relatively limited. In this study, we aimed to investigate the spatial distributions and diversity of Bathyarchaeia in paddy soils across eastern China, which is a major rice production region. The relative abundance of Bathyarchaeia among total archaea ranged from 3 to 68% in paddy soils, and Bathy-6 was the dominant subgroup among the Bathyarchaeia (70-80% of all sequences). Bathyarchaeia showed higher migration ability and wider niche width based on the neutral and null model simulations. Bathy-6 was primarily assembled by deterministic processes. Soil pH and C/N ratio were identified as key factors influencing the Bathyarchaeia composition, whereas C/N ratio and mean annual temperature influenced the relative abundance of Bathyarchaeia. Network analysis showed that specific Bathyarchaeia taxa occupied keystone positions in the archaeal community and co-occurred with some methanogenic archaea, including Methanosarcina and Methanobacteria, and ammonia-oxidizing archaea belonging to Nitrososphaeria. This study provides important insights into the biogeography and niche differentiation of Bathyarchaeia particularly in paddy soil ecosystems.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10908009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seed tuber imprinting shapes the next-generation potato microbiome 块茎种子印记塑造下一代马铃薯微生物群
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-02-21 DOI: 10.1186/s40793-024-00553-w
Yang Song, Jelle Spooren, Casper D. Jongekrijg, Ellen J. H. H. Manders, Ronnie de Jonge, Corné M. J. Pieterse, Peter A. H. M. Bakker, Roeland L. Berendsen
{"title":"Seed tuber imprinting shapes the next-generation potato microbiome","authors":"Yang Song, Jelle Spooren, Casper D. Jongekrijg, Ellen J. H. H. Manders, Ronnie de Jonge, Corné M. J. Pieterse, Peter A. H. M. Bakker, Roeland L. Berendsen","doi":"10.1186/s40793-024-00553-w","DOIUrl":"https://doi.org/10.1186/s40793-024-00553-w","url":null,"abstract":"Potato seed tubers are colonized and inhabited by soil-borne microbes, that can affect the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants under field condition by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots, and tracked the microbial transmission from different seed tuber compartments to sprouts. We observed that field of production and potato genotype significantly (P < 0.01) affected the composition of the seed tuber microbiome and that these differences persisted during winter storage of the seed tubers. Remarkably, when seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished (P < 0.01) according to the production field of the seed tuber. Surprisingly, we found little vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers and roots, constituting less than 0.2% of their respective microbial communities. However, under controlled conditions, around 98% of the sprout microbiome was found to originate from the seed tuber and had retained their field-specific patterns. The field of production shapes the microbiome of seed tubers, emerging potato plants and even the microbiome of newly formed daughter tubers. Different compartments of seed tubers harbor distinct microbiomes. Both bacteria and fungi on seed tubers have the potential of being vertically transmitted to the sprouts, and the sprout subsequently promotes proliferation of a select number of microbes from the seed tuber. Recognizing the role of plant microbiomes in plant health, the initial microbiome of seed tubers specifically or planting materials in general is an overlooked trait. Elucidating the relative importance of the initial microbiome and the mechanisms by which the origin of planting materials affect microbiome assembly will pave the way for the development of microbiome-based predictive models that may predict the quality of seed tuber lots, ultimately facilitating microbiome-improved potato cultivation.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The seeds of Plantago lanceolata comprise a stable core microbiome along a plant richness gradient 沿植物丰富度梯度,车前子的种子构成了一个稳定的核心微生物组
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-02-02 DOI: 10.1186/s40793-024-00552-x
Yuri Pinheiro Alves de Souza, Michael Schloter, Wolfgang Weisser, Yuanyuan Huang, Stefanie Schulz
{"title":"The seeds of Plantago lanceolata comprise a stable core microbiome along a plant richness gradient","authors":"Yuri Pinheiro Alves de Souza, Michael Schloter, Wolfgang Weisser, Yuanyuan Huang, Stefanie Schulz","doi":"10.1186/s40793-024-00552-x","DOIUrl":"https://doi.org/10.1186/s40793-024-00552-x","url":null,"abstract":"Seed endophytic bacteria are beneficial to plants. They improve seedling growth by enhancing plant nutrient uptake, modulating stress-related phytohormone production, and targeting pests and pathogens with antibiotics. Seed endophyte composition can be influenced by pollination, plant cultivar, and soil physicochemical conditions. However, the effects of plant community richness on seed endophytes are unknown. To investigate the effects of increasing plant species richness on the diversity and composition of the seed microbiome, we made use of a well-established long-term biodiversity experiment in Germany (The Jena Experiment). We sampled seeds from different Plantago lanceolata blossoms in a plant diversity gradient ranging from monoculture to 16 species mixtures. The seeds were surface sterilized to remove seed surface-associated bacteria and subjected to a metabarcoding approach to assess bacterial community structure. Our data indicate a very stable core microbiome, which accounted for more than 90% of the reads and was present in all seeds independent of the plant richness level the seeds originated from. It consisted mainly of reads linked to Pseudomonas rhizosphaerae, Sphingomonas faeni and Pirellulla spp. 9% of the obtained reads were not part of the core microbiome and were only present in plots of specific diversity levels. The number of unique ASVs was positively correlated with plant richness. Interestingly, most reads described as non-core members belonged to the same genera described as the core microbiome, indicating the presence of different strains or species with possibly different functional properties important for seed performance. Our data indicate that Plantago lanceolata maintains a large seeds core microbiome across the plant richness gradient. However, the number of unique ASVs increases alongside the plant community richness, indicating that ecosystem biodiversity also mitigates diversity loss in seed endophytes.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139669538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring virus-host-environment interactions in a chemotrophic-based underground estuary 探索基于化学营养的地下河口中病毒-宿主-环境之间的相互作用
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-01-30 DOI: 10.1186/s40793-024-00549-6
Timothy M. Ghaly, Amaranta Focardi, Liam D. H. Elbourne, Brodie Sutcliffe, William F. Humphreys, Paul R. Jaschke, Sasha G. Tetu, Ian T. Paulsen
{"title":"Exploring virus-host-environment interactions in a chemotrophic-based underground estuary","authors":"Timothy M. Ghaly, Amaranta Focardi, Liam D. H. Elbourne, Brodie Sutcliffe, William F. Humphreys, Paul R. Jaschke, Sasha G. Tetu, Ian T. Paulsen","doi":"10.1186/s40793-024-00549-6","DOIUrl":"https://doi.org/10.1186/s40793-024-00549-6","url":null,"abstract":"Viruses play important roles in modulating microbial communities and influencing global biogeochemistry. There is now growing interest in characterising their ecological roles across diverse biomes. However, little is known about viral ecology in low-nutrient, chemotrophic-based environments. In such ecosystems, virus-driven manipulation of nutrient cycles might have profound impacts across trophic levels. In particular, anchialine environments, which are low-energy underground estuaries sustained by chemotrophic processes, represent ideal model systems to study novel virus-host-environment interactions. Here, we employ metagenomic sequencing to investigate the viral community in Bundera Sinkhole, an anchialine ecosystem rich in endemic species supported by microbial chemosynthesis. We find that the viruses are highly novel, with less than 2% representing described viruses, and are hugely abundant, making up as much as 12% of microbial intracellular DNA. These highly abundant viruses largely infect important prokaryotic taxa that drive key metabolic processes in the sinkhole. Further, the abundance of viral auxiliary metabolic genes (AMGs) involved in nucleotide and protein synthesis was strongly correlated with declines in environmental phosphate and sulphate concentrations. These AMGs encoded key enzymes needed to produce sulphur-containing amino acids, and phosphorus metabolic enzymes involved in purine and pyrimidine nucleotide synthesis. We hypothesise that this correlation is either due to selection of these AMGs under low phosphate and sulphate concentrations, highlighting the dynamic interactions between viruses, their hosts, and the environment; or, that these AMGs are driving increased viral nucleotide and protein synthesis via manipulation of host phosphorus and sulphur metabolism, consequently driving nutrient depletion in the surrounding water. This study represents the first metagenomic investigation of viruses in anchialine ecosystems, and provides new hypotheses and insights into virus-host-environment interactions in such ‘dark’, low-energy environments. This is particularly important since anchialine ecosystems are characterised by diverse endemic species, both in their microbial and faunal assemblages, which are primarily supported by microbial chemosynthesis. Thus, virus-host-environment interactions could have profound effects cascading through all trophic levels.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139590262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subtropical coastal microbiome variations due to massive river runoff after a cyclonic event. 气旋事件后大量河流径流导致的亚热带沿海微生物群变化。
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-01-30 DOI: 10.1186/s40793-024-00554-9
M Meyneng, H Lemonnier, R Le Gendre, G Plougoulen, F Antypas, D Ansquer, J Serghine, S Schmitt, R Siano
{"title":"Subtropical coastal microbiome variations due to massive river runoff after a cyclonic event.","authors":"M Meyneng, H Lemonnier, R Le Gendre, G Plougoulen, F Antypas, D Ansquer, J Serghine, S Schmitt, R Siano","doi":"10.1186/s40793-024-00554-9","DOIUrl":"10.1186/s40793-024-00554-9","url":null,"abstract":"<p><strong>Background: </strong>Coastal ecosystem variability at tropical latitudes is dependent on climatic conditions. During the wet, rainy season, extreme climatic events such as cyclones, precipitation, and winds can be intense over a short period and may have a significant impact on the entire land‒sea continuum. This study focused on the effect of river runoff across the southwest coral lagoon ecosystem of Grand Terre Island of New Caledonia (South Pacific) after a cyclonic event, which is considered a pulse disturbance at our study site. The variability of coastal microbiomes, studied by the metabarcoding of V4 18S (protists) and V4-V5 16S (bacteria) rDNA genes, after the cyclone passage was associated with key environmental parameters describing the runoff impact (salinity, organic matter proxies, terrestrial rock origin metals) and compared to community structures observed during the dry season.</p><p><strong>Results: </strong>Microbiome biodiversity patterns of the dry season were destructured because of the runoff impact, and land-origin taxa were observed in the coastal areas. After the rainy event, different daily community dynamics were observed locally, with specific microbial taxa explaining these variabilities. Plume dispersal modeling revealed the extent of low salinity areas up to the coral reef area (16 km offshore), but a rapid (< 6 days) recovery to typical steady conditions of the lagoon's hydrology was observed. Conversely, during the same time, some biological components (microbial communities, Chl a) and biogeochemical components (particulate nickel, terrigenous organic matter) of the ecosystem did not recover to values observed during the dry season conditions.</p><p><strong>Conclusion: </strong>The ecosystem resilience of subtropical ecosystems must be evaluated from a multidisciplinary, holistic perspective and over the long term. This allows evaluating the risk associated with a potential continued and long-term disequilibrium of the ecosystem, triggered by the change in the frequency and intensity of extreme climatic events in the era of planetary climatic changes.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant effects on microbiome composition are constrained by environmental conditions in a successional grassland. 植物对微生物组组成的影响受到演替草地环境条件的制约。
IF 6.2 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-01-24 DOI: 10.1186/s40793-024-00550-z
Lenka Mészárošová, Eliška Kuťáková, Petr Kohout, Zuzana Münzbergová, Petr Baldrian
{"title":"Plant effects on microbiome composition are constrained by environmental conditions in a successional grassland.","authors":"Lenka Mészárošová, Eliška Kuťáková, Petr Kohout, Zuzana Münzbergová, Petr Baldrian","doi":"10.1186/s40793-024-00550-z","DOIUrl":"10.1186/s40793-024-00550-z","url":null,"abstract":"<p><strong>Background: </strong>Below-ground microbes mediate key ecosystem processes and play a vital role in plant nutrition and health. Understanding the composition of the belowground microbiome is therefore important for maintaining ecosystem stability. The structure of the belowground microbiome is largely determined by individual plants, but it is not clear how far their influence extends and, conversely, what the influence of other plants growing nearby is.</p><p><strong>Results: </strong>To determine the extent to which a focal host plant influences its soil and root microbiome when growing in a diverse community, we sampled the belowground bacterial and fungal communities of three plant species across a primary successional grassland sequence. The magnitude of the host effect on its belowground microbiome varied among microbial groups, soil and root habitats, and successional stages characterized by different levels of diversity of plant neighbours. Soil microbial communities were most strongly structured by sampling site and showed significant spatial patterns that were partially driven by soil chemistry. The influence of focal plant on soil microbiome was low but tended to increase with succession and increasing plant diversity. In contrast, root communities, particularly bacterial, were strongly structured by the focal plant species. Importantly, we also detected a significant effect of neighbouring plant community composition on bacteria and fungi associating with roots of the focal plants. The host influence on root microbiome varied across the successional grassland sequence and was highest in the most diverse site.</p><p><strong>Conclusions: </strong>Our results show that in a species rich natural grassland, focal plant influence on the belowground microbiome depends on environmental context and is modulated by surrounding plant community. The influence of plant neighbours is particularly pronounced in root communities which may have multiple consequences for plant community productivity and stability, stressing the importance of plant diversity for ecosystem functioning.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weather in two climatic regions shapes the diversity and drives the structure of fungal endophytic community of bilberry (Vaccinium myrtillus L.) fruit 两个气候区的天气影响山桑子(越橘)果实真菌内生群落的多样性和结构
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-01-22 DOI: 10.1186/s40793-024-00551-y
Minh-Phuong Nguyen, Kaisa Lehosmaa, Katalin Toth, Janne J. Koskimäki, Hely Häggman, Anna Maria Pirttilä
{"title":"Weather in two climatic regions shapes the diversity and drives the structure of fungal endophytic community of bilberry (Vaccinium myrtillus L.) fruit","authors":"Minh-Phuong Nguyen, Kaisa Lehosmaa, Katalin Toth, Janne J. Koskimäki, Hely Häggman, Anna Maria Pirttilä","doi":"10.1186/s40793-024-00551-y","DOIUrl":"https://doi.org/10.1186/s40793-024-00551-y","url":null,"abstract":"Bilberry (Vaccinium myrtillus L.) is one of the most important economic and natural resources in Northern Europe. Despite its importance, the endophytic fungal community of the fruits has rarely been investigated. Biogeographic patterns and determinants of the fungal diversity in the bilberry fruit are poorly understood, albeit fungal endophytes can have a close relationship with the host plants. Here, we investigated the effect of climatic regions, and their weather conditions within growth season and soil properties on fungal endophytic communities of bilberry fruits collected from northern and southern regions of Finland using high-throughput sequencing technology targeting the internal transcribed spacer 2 ribosomal DNA region for fungi. Species richness and beta diversity (variation in community structure) were higher in the southern compared to the studied northern region. The weather condition of the growth season drove both fungal richness and community structure. Furthermore, abundance of the genera Venturia, Cladosporium, and Podosphaera was influenced by the weather, being different between the south and north regions. We conclude that diversity and assembly structure of the fungal endophytes in bilberry fruits follow similar patterns as for foliar fungal endophytes, being shaped by various environmental factors, such as the climate and surrounding vegetation.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial wilt affects the structure and assembly of microbial communities along the soil-root continuum 细菌枯萎病影响土壤-根系连续体微生物群落的结构和组合
IF 7.9 2区 环境科学与生态学
Environmental Microbiome Pub Date : 2024-01-16 DOI: 10.1186/s40793-024-00548-7
Jinchang Liang, Chengjian Wei, Xueru Song, Rui Wang, Heli Shi, Jun Tan, Dejie Cheng, Wenjing Wang, Xiaoqiang Wang
{"title":"Bacterial wilt affects the structure and assembly of microbial communities along the soil-root continuum","authors":"Jinchang Liang, Chengjian Wei, Xueru Song, Rui Wang, Heli Shi, Jun Tan, Dejie Cheng, Wenjing Wang, Xiaoqiang Wang","doi":"10.1186/s40793-024-00548-7","DOIUrl":"https://doi.org/10.1186/s40793-024-00548-7","url":null,"abstract":"Beneficial root-associated microbiomes play crucial roles in enhancing plant growth and suppressing pathogenic threats, and their application for defending against pathogens has garnered increasing attention. Nonetheless, the dynamics of microbiome assembly and defense mechanisms during pathogen invasion remain largely unknown. In this study, we aimed to investigate the diversity and assembly of microbial communities within four niches (bulk soils, rhizosphere, rhizoplane, and endosphere) under the influence of the bacterial plant pathogen Ralstonia solanacearum. Our results revealed that healthy tobacco plants exhibited more diverse community compositions and more robust co-occurrence networks in root-associated niches compared to diseased tobacco plants. Stochastic processes (dispersal limitation and drift), rather than determinism, dominated the assembly processes, with a higher impact of drift observed in diseased plants than in healthy ones. Furthermore, during the invasion of R. solanacearum, the abundance of Fusarium genera, a known potential pathogen of Fusarium wilt, significantly increased in diseased plants. Moreover, the response strategies of the microbiomes to pathogens in diseased and healthy plants diverged. Diseased microbiomes recruited beneficial microbial taxa, such as Streptomyces and Bacilli, to mount defenses against pathogens, with an increased presence of microbial taxa negatively correlated with the pathogen. Conversely, the potential defense strategies varied across niches in healthy plants, with significant enrichments of functional genes related to biofilm formation in the rhizoplane and antibiotic biosynthesis in the endosphere. Our study revealed the varied community composition and assembly mechanism of microbial communities between healthy and diseased tobacco plants along the soil-root continuum, providing new insights into niche-specific defense mechanisms against pathogen invasions. These findings may underscore the potential utilization of different functional prebiotics to enhance plants’ ability to fend off pathogens.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信