Clémentine Lepinay, Tomáš Větrovský, Milan Chytrý, Pavel Dřevojan, Karel Fajmon, Tomáš Cajthaml, Petr Kohout, Petr Baldrian
{"title":"Effect of plant communities on bacterial and fungal communities in a Central European grassland.","authors":"Clémentine Lepinay, Tomáš Větrovský, Milan Chytrý, Pavel Dřevojan, Karel Fajmon, Tomáš Cajthaml, Petr Kohout, Petr Baldrian","doi":"10.1186/s40793-024-00583-4","DOIUrl":"10.1186/s40793-024-00583-4","url":null,"abstract":"<p><strong>Background: </strong>Grasslands provide fundamental ecosystem services that are supported by their plant diversity. However, the importance of plant taxonomic diversity for the diversity of other taxa in grasslands remains poorly understood. Here, we studied the associations between plant communities, soil chemistry and soil microbiome in a wooded meadow of Čertoryje (White Carpathians, Czech Republic), a European hotspot of plant species diversity.</p><p><strong>Results: </strong>High plant diversity was associated with treeless grassland areas with high primary productivity and high contents of soil nitrogen and organic carbon. In contrast, low plant diversity occurred in grasslands near solitary trees and forest edges. Fungal communities differed between low-diversity and high-diversity grasslands more strongly than bacterial communities, while the difference in arbuscular mycorrhizal fungi (AMF) depended on their location in soil versus plant roots. Compared to grasslands with low plant diversity, high-diversity plant communities had a higher diversity of fungi including soil AMF, a different fungal and soil AMF community composition and higher bacterial and soil AMF biomass. Root AMF composition differed only slightly between grasslands with low and high plant diversity. Trees dominated the belowground plant community in low-diversity grasslands, which influenced microbial diversity and composition.</p><p><strong>Conclusions: </strong>The determinants of microbiome abundance and composition in grasslands are complex. Soil chemistry mainly influenced bacterial communities, while plant community type mainly affected fungal (including AMF) communities. Further studies on the functional roles of microbial communities are needed to understand plant-soil-microbe interactions and their involvement in grassland ecosystem services.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"42"},"PeriodicalIF":6.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristina Michl, Christophe David, Benjamin Dumont, Linda-Maria Dimitrova Mårtensson, Frank Rasche, Gabriele Berg, Tomislav Cernava
{"title":"Determining the footprint of breeding in the seed microbiome of a perennial cereal.","authors":"Kristina Michl, Christophe David, Benjamin Dumont, Linda-Maria Dimitrova Mårtensson, Frank Rasche, Gabriele Berg, Tomislav Cernava","doi":"10.1186/s40793-024-00584-3","DOIUrl":"10.1186/s40793-024-00584-3","url":null,"abstract":"<p><strong>Background: </strong>Seed endophytes have a significant impact on plant health and fitness. They can be inherited and passed on to the next plant generation. However, the impact of breeding on their composition in seeds is less understood. Here, we studied the indigenous seed microbiome of a recently domesticated perennial grain crop (Intermediate wheatgrass, Thinopyrum intermedium L.) that promises great potential for harnessing microorganisms to enhance crop performance by a multiphasic approach, including amplicon and strain libraries, as well as molecular and physiological assays.</p><p><strong>Results: </strong>Intermediate wheatgrass seeds harvested from four field sites in Europe over three consecutive years were dominated by Proteobacteria (88%), followed by Firmicutes (10%). Pantoea was the most abundant genus and Pantoea agglomerans was identified as the only core taxon present in all samples. While bacterial diversity and species richness were similar across all accessions, the relative abundance varied especially in terms of low abundant and rare taxa. Seeds from four different breeding cycles (TLI C3, C5, C704, C801) showed significant differences in bacterial community composition and abundance. We found a decrease in the relative abundance of the functional genes nirK and nifH as well as a drop in bacterial diversity and richness. This was associated with a loss of amplicon sequence variants (ASVs) in Actinobacteria, Alphaproteobacteria, and Bacilli, which could be partially compensated in offspring seeds, which have been cultivated at a new site. Interestingly, only a subset assigned to potentially beneficial bacteria, e.g. Pantoea, Kosakonia, and Pseudomonas, was transmitted to the next plant generation or shared with offspring seeds.</p><p><strong>Conclusion: </strong>Overall, this study advances our understanding of the assembly and transmission of endophytic seed microorganisms in perennial intermediate wheatgrass and highlights the importance of considering the plant microbiome in future breeding programs.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"40"},"PeriodicalIF":7.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coral microbiomes are structured by environmental gradients in deep waters.","authors":"Samuel A Vohsen, Santiago Herrera","doi":"10.1186/s40793-024-00579-0","DOIUrl":"10.1186/s40793-024-00579-0","url":null,"abstract":"<p><strong>Background: </strong>Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing.</p><p><strong>Results: </strong>Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location.</p><p><strong>Conclusions: </strong>Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"38"},"PeriodicalIF":7.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benoit Paix, Elodie van der Valk, Nicole J de Voogd
{"title":"Dynamics, diversity, and roles of bacterial transmission modes during the first asexual life stages of the freshwater sponge Spongilla lacustris.","authors":"Benoit Paix, Elodie van der Valk, Nicole J de Voogd","doi":"10.1186/s40793-024-00580-7","DOIUrl":"10.1186/s40793-024-00580-7","url":null,"abstract":"<p><strong>Background: </strong>Sponge-associated bacteria play important roles in the physiology of their host, whose recruitment processes are crucial to maintain symbiotic associations. However, the acquisition of bacterial communities within freshwater sponges is still under explored. Spongilla lacustris is a model sponge widely distributed in European rivers and lakes, producing dormant cysts (named gemmules) for their asexual reproduction, before winter. Through an in vitro experiment, this study aims to describe the dynamics of bacterial communities and their transmission modes following the hatching of these gemmules.</p><p><strong>Results: </strong>An overall change of bacterial β-diversity was observed through the ontology of the juvenile sponges. These temporal differences were potentially linked, first to the osculum acquisition and the development of a canal system, and then, the increasing colonization of the Chlorella-like photosymbionts. Gemmules hatching with a sterilized surface were found to have a more dispersed and less diverse microbiome, revealing the importance of gemmule epibacteria for the whole holobiont stability. These epibacteria were suggested to be vertically transmitted from the maternal tissues to the gemmule surface. Vertical transmission through the incorporation of bacterial communities inside of the gemmule, was also found as a dominant transmission mode, especially with the nitrogen fixers Terasakiellaceae. Finally, we showed that almost no ASVs were shared between the free-living community and the juveniles, suggesting that horizontal recruitment is unlikely to happen during the first stages of development. However, the free-living bacteria filtered are probably used as a source of nutrients, allowing an enrichment of copiotrophic bacteria already present within its microbiome.</p><p><strong>Conclusions: </strong>This study brings new insight for a better understanding of the microbiome acquisition during the first stages of freshwater sponge development. We showed the importance of epibacterial communities on gemmules for the whole holobiont stability, and demonstrated the near absence of recruitment of free-living bacteria during the first stages.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"37"},"PeriodicalIF":7.9,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabrina Ninck, Thomas Klaus, Tatiana V Kochetkova, Sarah P Esser, Leonard Sewald, Farnusch Kaschani, Christopher Bräsen, Alexander J Probst, Ilya V Kublanov, Bettina Siebers, Markus Kaiser
{"title":"Environmental activity-based protein profiling for function-driven enzyme discovery from natural communities.","authors":"Sabrina Ninck, Thomas Klaus, Tatiana V Kochetkova, Sarah P Esser, Leonard Sewald, Farnusch Kaschani, Christopher Bräsen, Alexander J Probst, Ilya V Kublanov, Bettina Siebers, Markus Kaiser","doi":"10.1186/s40793-024-00577-2","DOIUrl":"10.1186/s40793-024-00577-2","url":null,"abstract":"<p><strong>Background: </strong>Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging.</p><p><strong>Results: </strong>Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia.</p><p><strong>Conclusions: </strong>By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"36"},"PeriodicalIF":7.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle Hagen, Rupashree Dass, Cathy Westhues, Jochen Blom, Sebastian J. Schultheiss, Sascha Patz
{"title":"Interpretable machine learning decodes soil microbiome’s response to drought stress","authors":"Michelle Hagen, Rupashree Dass, Cathy Westhues, Jochen Blom, Sebastian J. Schultheiss, Sascha Patz","doi":"10.1186/s40793-024-00578-1","DOIUrl":"https://doi.org/10.1186/s40793-024-00578-1","url":null,"abstract":"Extreme weather events induced by climate change, particularly droughts, have detrimental consequences for crop yields and food security. Concurrently, these conditions provoke substantial changes in the soil bacterial microbiota and affect plant health. Early recognition of soil affected by drought enables farmers to implement appropriate agricultural management practices. In this context, interpretable machine learning holds immense potential for drought stress classification of soil based on marker taxa. This study demonstrates that the 16S rRNA-based metagenomic approach of Differential Abundance Analysis methods and machine learning-based Shapley Additive Explanation values provide similar information. They exhibit their potential as complementary approaches for identifying marker taxa and investigating their enrichment or depletion under drought stress in grass lineages. Additionally, the Random Forest Classifier trained on a diverse range of relative abundance data from the soil bacterial micobiome of various plant species achieves a high accuracy of 92.3 % at the genus rank for drought stress prediction. It demonstrates its generalization capacity for the lineages tested. In the detection of drought stress in soil bacterial microbiota, this study emphasizes the potential of an optimized and generalized location-based ML classifier. By identifying marker taxa, this approach holds promising implications for microbe-assisted plant breeding programs and contributes to the development of sustainable agriculture practices. These findings are crucial for preserving global food security in the face of climate change.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"96 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor Gambarini, Cornelis J Drost, Joanne M Kingsbury, Louise Weaver, Olga Pantos, Kim M Handley, Gavin Lear
{"title":"Uncoupled: investigating the lack of correlation between the transcription of putative plastic-degrading genes in the global ocean microbiome and marine plastic pollution.","authors":"Victor Gambarini, Cornelis J Drost, Joanne M Kingsbury, Louise Weaver, Olga Pantos, Kim M Handley, Gavin Lear","doi":"10.1186/s40793-024-00575-4","DOIUrl":"10.1186/s40793-024-00575-4","url":null,"abstract":"<p><strong>Background: </strong>Plastic pollution is a severe threat to marine ecosystems. While some microbial enzymes can degrade certain plastics, the ability of the global ocean microbiome to break down diverse environmental plastics remains limited. We employed metatranscriptomic data from an international ocean survey to explore global and regional patterns in microbial plastic degradation potential.</p><p><strong>Results: </strong>On a global oceanic scale, we found no significant correlation between levels of plastic pollution and the expression of genes encoding enzymes putatively identified as capable of plastic degradation. Even when looking at different regional scales, ocean depth layers, or plastic types, we found no strong or even moderate correlation between plastic pollution and relative abundances of transcripts for enzymes with presumed plastic biodegradation potential. Our data, however, indicate that microorganisms in the Southern Ocean show a higher potential for plastic degradation, making them more appealing candidates for bioprospecting novel plastic-degrading enzymes.</p><p><strong>Conclusion: </strong>Our research contributes to understanding the complex global relationship between plastic pollution and microbial plastic degradation potential. We reveal that the transcription of putative plastic-degrading genes in the global ocean microbiome does not correlate to marine plastic pollution, highlighting the ongoing danger that plastic poses to marine environments threatened by plastic pollution.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"34"},"PeriodicalIF":7.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Sayuri Nishisaka, João Paulo Ventura, Harsh P Bais, Rodrigo Mendes
{"title":"Role of Bacillus subtilis exopolymeric genes in modulating rhizosphere microbiome assembly.","authors":"Caroline Sayuri Nishisaka, João Paulo Ventura, Harsh P Bais, Rodrigo Mendes","doi":"10.1186/s40793-024-00567-4","DOIUrl":"10.1186/s40793-024-00567-4","url":null,"abstract":"<p><strong>Background: </strong>Bacillus subtilis is well known for promoting plant growth and reducing abiotic and biotic stresses. Mutant gene-defective models can be created to understand important traits associated with rhizosphere fitness. This study aimed to analyze the role of exopolymeric genes in modulating tomato rhizosphere microbiome assembly under a gradient of soil microbiome diversities using the B. subtilis wild-type strain UD1022 and its corresponding mutant strain UD1022<sup>eps-TasA</sup>, which is defective in exopolysaccharide (EPS) and TasA protein production.</p><p><strong>Results: </strong>qPCR revealed that the B. subtilis UD1022<sup>eps-TasA-</sup> strain has a diminished capacity to colonize tomato roots in soils with diluted microbial diversity. The analysis of bacterial β-diversity revealed significant differences in bacterial and fungal community structures following inoculation with either the wild-type or mutant B. subtilis strains. The Verrucomicrobiota, Patescibacteria, and Nitrospirota phyla were more enriched with the wild-type strain inoculation than with the mutant inoculation. Co-occurrence analysis revealed that when the mutant was inoculated in tomato, the rhizosphere microbial community exhibited a lower level of modularity, fewer nodes, and fewer communities compared to communities inoculated with wild-type B. subtilis.</p><p><strong>Conclusion: </strong>This study advances our understanding of the EPS and TasA genes, which are not only important for root colonization but also play a significant role in shaping rhizosphere microbiome assembly. Future research should concentrate on specific microbiome genetic traits and their implications for rhizosphere colonization, coupled with rhizosphere microbiome modulation. These efforts will be crucial for optimizing PGPR-based approaches in agriculture.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"33"},"PeriodicalIF":7.9,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Benalcazar, Brent Seuradge, Amanda C Diochon, Randall K Kolka, Lori A Phillips
{"title":"Conversion of boreal forests to agricultural systems: soil microbial responses along a land-conversion chronosequence.","authors":"Paul Benalcazar, Brent Seuradge, Amanda C Diochon, Randall K Kolka, Lori A Phillips","doi":"10.1186/s40793-024-00576-3","DOIUrl":"10.1186/s40793-024-00576-3","url":null,"abstract":"<p><strong>Background: </strong>Boreal regions are warming at more than double the global average, creating opportunities for the northward expansion of agriculture. Expanding agricultural production in these regions will involve the conversion of boreal forests to agricultural fields, with cumulative impacts on soil microbial communities and associated biogeochemical cycling processes. Understanding the magnitude or rate of change that will occur with these biological processes will provide information that will enable these regions to be developed in a more sustainable manner, including managing carbon and nitrogen losses. This study, based in the southern boreal region of Canada where agricultural expansion has been occurring for decades, used a paired forest-adjacent agricultural field approach to quantify how soil microbial communities and functions were altered at three different stages post-conversion (< 10, > 10 and < 50, and > 50 years). Soil microbial functional capacity was assessed by quantitative PCR of genes associated with carbon (C), nitrogen, and phosphorous (P) cycling; microbial taxonomic diversity and community structure was assessed by amplicon sequencing.</p><p><strong>Results: </strong>Fungal alpha diversity did not change, but communities shifted from Basidiomycota to Ascomycota dominant within the first decade. Bacterial alpha diversity increased, with Gemmatimonadota groups generally increasing and Actinomycetota groups generally decreasing in agricultural soils. These altered communities led to altered functional capacity. Functional genes associated with nitrification and low molecular weight C cycling potential increased after conversion, while those associated with organic P mineralization potential decreased. Stable increases in most N cycling functions occurred within the first decade, but C cycling functions were still changing 50 years post conversion.</p><p><strong>Conclusions: </strong>Microbial communities underwent a rapid shift in the first decade, followed by several decades of slower transition until stabilizing 50 years post conversion. Understanding how the microbial communities respond at different stages post-conversion improves our ability to predict C and N losses from emerging boreal agricultural systems, and provides insight into how best to manage these soils in a way that is sustainable at the local level and within a global context.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"32"},"PeriodicalIF":7.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11088160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}