Joana MacLean, Alexander Bartholomäus, Roberts Blukis, Susanne Liebner, Dirk Wagner
{"title":"Metatranscriptomics of microbial biofilm succession on HDPE foil: uncovering plastic-degrading potential in soil communities.","authors":"Joana MacLean, Alexander Bartholomäus, Roberts Blukis, Susanne Liebner, Dirk Wagner","doi":"10.1186/s40793-024-00621-1","DOIUrl":"10.1186/s40793-024-00621-1","url":null,"abstract":"<p><strong>Background: </strong>Although plastic pollution is increasing worldwide, very little is known about the microbial processes that take place once plastic debris is incorporated into the soil matrix. In this study, we conducted the first metatranscriptome analysis of polyethylene (PE)-associated biofilm communities in highly polluted landfill soil and compared their gene expression to that of a forest soil community within a 53-day period.</p><p><strong>Results: </strong>Our findings indicate that the microbial population present in soil contaminated with plastic debris is predisposed to both inhabit and degrade plastic surfaces. Surprisingly, the microbial community from undisturbed forest soil contained a diverse array of plastic-associated genes (PETase, alkB, etc.), indicating the presence of an enzymatic machinery capable of plastic degradation. Plastic-degrading taxa were upregulated in the early stages of biofilm formation. During the maturation of the biofilm, the alkB1/alkM transcripts, which encode PE-degrading enzymes, and transporters such as fadL, livG, livF, livH, and livM were upregulated, along with transcripts associated with the fatty acid β-oxidation pathway.</p><p><strong>Conclusions: </strong>In this study, we address the underlying patterns of gene expression during biofilm development in a PE-associated plastisphere in soil and address the pressing question of whether natural microbial communities have the potential to biodegrade petrochemical-based plastic in the soil environment.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"95"},"PeriodicalIF":6.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soil properties drive nitrous oxide accumulation patterns by shaping denitrifying bacteriomes.","authors":"Saira Bano, Qiaoyu Wu, Siyu Yu, Xinhui Wang, Xiaojun Zhang","doi":"10.1186/s40793-024-00643-9","DOIUrl":"10.1186/s40793-024-00643-9","url":null,"abstract":"<p><p>In agroecosystems, nitrous oxide (N₂O) emissions are influenced by both microbiome composition and soil properties, yet the relative importance of these factors in determining differential N₂O emissions remains unclear. This study investigates the impacts of these factors on N₂O emissions using two primary agricultural soils from northern China: fluvo-aquic soil (FS) from the North China Plain and black soil (BS) from Northeast China, which exhibit significant differences in physicochemical properties. In non-sterilized controls (NSC), we observed distinct denitrifying bacterial phenotypes between FS and BS, with BS exhibiting significantly higher N₂O emissions. Cross-inoculation experiments were conducted by introducing extracted microbiomes into sterile recipient soils of both types to disentangle the relative contributions of soil properties and microbiomes on N₂O emission potential. The results showed recipient-soil-dependent gas kinetics, with significantly higher N₂O/(N₂O + N₂) ratios in BS compared to FS, regardless of the inoculum type. Metagenomic analysis further revealed significant shifts in denitrification genes and microbial diversity of the inoculated bacteriomes influenced by the recipient soil. The higher ratios of nirS/nosZ in FS and nirK/nosZ in BS indicated that the recipient soil dictates the formation of different denitrifying guilds. Specifically, the BS environment fosters nirK-based denitrifiers like Rhodanobacter, contributing to higher N₂O accumulation, while FS supports a diverse array of denitrifiers, including Pseudomonas and Stutzerimonas, associated with complete denitrification and lower N₂O emissions. This study underscores the critical role of soil properties in shaping microbial community dynamics and greenhouse gas emissions. These findings highlight the importance of considering soil physicochemical properties in managing agricultural practices to mitigate N₂O emissions.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"94"},"PeriodicalIF":6.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stochasticity-dominated rare fungal endophytes contribute to coexistence stability and saponin accumulation in Panax species.","authors":"Ye Liu, Liping Shi, Fei Hong, Guangfei Wei, Zhenzhen Jiang, Xiuye Wei, Jingjing Peng, Guozhuang Zhang, Linlin Dong","doi":"10.1186/s40793-024-00645-7","DOIUrl":"10.1186/s40793-024-00645-7","url":null,"abstract":"<p><p>Fungal communities inhabiting plant tissues are complex systems of inter-species interactions, consisting of both the \"abundant biosphere\" and \"rare biosphere\". However, the composition, assembly, and stability of these subcommunities, as well as their contributions to productivity remain unclear. In this study, the taxonomic and functional composition, co-occurrence, and ecological assembly of abundant and rare fungal subcommunities in different tissues of three Panax species were investigated. Abundant subcommunities were dominated by potential plant pathogens belonging to Microbotryomycetes, while saprotrophic fungi like Agaricomycetes and Mortierellomycetes were more prevalent in rare subcommunities. The rare taxa played a central role in upholding the stability of the fungal networks as driven by Dothideomycetes and Sordariomycetes. Homogeneous selection played a larger role in the assembly of abundant fungal subcommunities compared to the rare counterparts, which was more dominated by stochastically ecological drift in all plant species. Rare biospheres played a larger role in the accumulation of saponin compared to their abundant counterparts, especially in the leaf endosphere, which was mainly affected by environmental factors (Mg, pH, OC, and etc.). Furthermore, we found that rare species belonging to unidentified saprotrophs were associated with saponin formation. This study provides hypotheses for future experiments to understand mechanisms accounting for the variations in the composition and function of rare fungal subcommunities across different Panax species.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"93"},"PeriodicalIF":6.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alison E Bennett, Scott Kelsey, Casey Saup, Mike Wilkins, Antonino Malacrinò
{"title":"Selenium alters the gene content but not the taxonomic composition of the soil microbiome.","authors":"Alison E Bennett, Scott Kelsey, Casey Saup, Mike Wilkins, Antonino Malacrinò","doi":"10.1186/s40793-024-00641-x","DOIUrl":"10.1186/s40793-024-00641-x","url":null,"abstract":"<p><strong>Background: </strong>Microbiomes, essential to ecosystem processes, face strong selective forces that can drive rapid evolutionary adaptation. However, our understanding of evolutionary processes within natural systems remains limited. We investigated evolution in response to naturally occurring selenium in soils of different geological parental materials on the Western Slope of Colorado. Our study focused on examining changes in gene frequencies within microbial communities in response to selenium exposure.</p><p><strong>Results: </strong>Despite expectations of taxonomic composition shifts and increased gene content changes at high-selenium sites, we found no significant alterations in microbial diversity or community composition. Surprisingly, we observed a significant increase in differentially abundant genes within high-selenium sites.</p><p><strong>Conclusions: </strong>These findings are suggestive that selection within microbiomes primarily drives the accumulation of genes among existing microbial taxa, rather than microbial species turnover, in response to strong stressors like selenium. Our study highlights an unusual system that allows us to examine evolution in response to the same stressor annually in a non-model system, contributing to understanding microbiome evolution beyond model systems.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"92"},"PeriodicalIF":6.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zengwei Feng, Qiuhong Liang, Qing Yao, Yang Bai, Honghui Zhu
{"title":"The role of the rhizobiome recruited by root exudates in plant disease resistance: current status and future directions.","authors":"Zengwei Feng, Qiuhong Liang, Qing Yao, Yang Bai, Honghui Zhu","doi":"10.1186/s40793-024-00638-6","DOIUrl":"10.1186/s40793-024-00638-6","url":null,"abstract":"<p><p>Root exudates serve as a bridge connecting plant roots and rhizosphere microbes, playing a key role in influencing the assembly and function of the rhizobiome. Recent studies have fully elucidated the role of root exudates in recruiting rhizosphere microbes to enhance plant performance, particularly in terms of plant resistance to soil-borne pathogens; however, it should be noted that the composition and amount of root exudates are primarily quantitative traits regulated by a large number of genes in plants. As a result, there are knowledge gaps in understanding the contribution of the rhizobiome to soil-borne plant disease resistance and the ternary link of plant genes, root exudates, and disease resistance-associated microbes. Advancements in technologies such as quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) offer opportunities for the identification of genes associated with quantitative traits. In the present review, we summarize recent studies on the interactions of plant and rhizosphere microbes through root exudates to enhance soil-borne plant disease resistance and also highlight methods for quantifying the contribution of the rhizobiome to plant disease resistance and identifying the genes responsible for recruiting disease resistance-associated microbes through root exudates.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"91"},"PeriodicalIF":6.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-term garlic‒maize rotation maintains the stable garlic rhizosphere microecology.","authors":"Shidong He, Minghao Lv, Rongxin Wang, Ningyang Li, Taotao Wang, Wenchong Shi, Zheng Gao, Xiang Li","doi":"10.1186/s40793-024-00636-8","DOIUrl":"10.1186/s40793-024-00636-8","url":null,"abstract":"<p><strong>Background: </strong>Crop rotation is a sophisticated agricultural practice that can modify the demographic structure and abundance of microorganisms in the soil, stimulate the growth and proliferation of beneficial microorganisms, and inhibit the development of harmful microorganisms. The stability of the rhizosphere microbiome is crucial for maintaining both soil ecosystem vitality and crop prosperity. However, the effects of extended garlic‒maize rotation on the physicochemical characteristics of garlic rhizosphere soil and the stability of its microbiome remain unclear. To investigate this phenomenon, soil samples from the garlic rhizosphere were collected across four different lengths of rotation in a garlic-maize rotation.</p><p><strong>Results: </strong>There were notable positive associations between the total nitrogen and total phosphorus contents in the soil and the duration of rotation. Prolonged rotation could increase the maintenance of microbiome α diversity. The number of years of rotation and the soil organic carbon (SOC) content emerged as principal determinants impacting the evolution of the bacterial community structure, with the SOC content playing a pivotal role in sculpting the species diversity within the garlic rhizosphere bacterial community. Additionally, SOC remains predominant in shaping the root-associated bacterial community's β-nearest taxon index. However, these factors do not have a notable effect on the fungal community inhabiting the garlic rhizosphere. In comparison with monoculture, rotation can amplify the interconnectivity and intricacy of microbial ecological networks. Long-term rotation can further maintain the stability of both microbial ecological networks and interactions between bacterial and fungal communities. It can enlist a plethora of beneficial Bacillus species microorganisms within the garlic rhizosphere to form a biological barricade that aids in safeguarding garlic against encroachment by the pathogenic fungus Fusarium oxysporum, consequently diminishing disease incidence. This study provides a theoretical foundation for the sustainable development of garlic through long-term crop rotation with maize.</p><p><strong>Conclusions: </strong>Our research results indicate that long-term garlic‒maize rotation maintains stable garlic rhizosphere microecology. Our study provides compelling evidence for the role of long-term crop rotation in maintaining microbiota and community stability, emphasizing the importance of cultivating specific beneficial microorganisms to enhance rotation strategies for garlic farming, thereby promoting sustainability in agriculture.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"90"},"PeriodicalIF":6.2,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katharina Steng, Friederike Roy, Harald Kellner, Julia Moll, Susanne Tittmann, Johanna Frotscher, Johanna Döring
{"title":"Functional diversity of the above-ground fungal community under long-term integrated, organic and biodynamic Vineyard Management.","authors":"Katharina Steng, Friederike Roy, Harald Kellner, Julia Moll, Susanne Tittmann, Johanna Frotscher, Johanna Döring","doi":"10.1186/s40793-024-00625-x","DOIUrl":"10.1186/s40793-024-00625-x","url":null,"abstract":"<p><strong>Background: </strong>Sustainable agriculture increasingly emphasizes the importance of microbial communities in influencing plant health and productivity. In viticulture, understanding the impact of management practices on fungal communities is critical, given their role in disease dynamics, grape and wine quality. This study investigates the effects of integrated, organic, and biodynamic management practices on the diversity and function of fungal communities in a vineyard located in Geisenheim, Germany, focusing on above-ground parts such as bark, leaves, and grapes.</p><p><strong>Results: </strong>Our findings indicate that while overall fungal species richness did not significantly differ among management systems across various compartments, the composition of these communities was distinctly influenced by the type of management system. In particular, leaf and grape compartments showed notable variations in fungal community structure between integrated and organic/biodynamic management. No differences were observed between organic and biodynamic management. Integrated management demonstrated a significantly higher abundance of mycoparasites in comparison to organic and biodynamic management, primarily attributed to the increased presence of Sporobolomyces roseus, Sporobolomyces ellipsoideus and Rhodotorula glutinis.</p><p><strong>Conclusions: </strong>The findings highlight the importance of management practices in shaping fungal community composition and function in vineyards. Although overall species richness remained unaffected, community composition and functional diversity varied, highlighting the potential for strategic microbiome management to enhance vineyard sustainability and plant health.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"89"},"PeriodicalIF":6.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Pilar Cabezas, Nuno A Fonseca, Antonio Muñoz-Mérida
{"title":"MIMt: a curated 16S rRNA reference database with less redundancy and higher accuracy at species-level identification.","authors":"M Pilar Cabezas, Nuno A Fonseca, Antonio Muñoz-Mérida","doi":"10.1186/s40793-024-00634-w","DOIUrl":"10.1186/s40793-024-00634-w","url":null,"abstract":"<p><strong>Motivation: </strong>Accurate determination and quantification of the taxonomic composition of microbial communities, especially at the species level, is one of the major issues in metagenomics. This is primarily due to the limitations of commonly used 16S rRNA reference databases, which either contain a lot of redundancy or a high percentage of sequences with missing taxonomic information. This may lead to erroneous identifications and, thus, to inaccurate conclusions regarding the ecological role and importance of those microorganisms in the ecosystem.</p><p><strong>Results: </strong>The current study presents MIMt, a new 16S rRNA database for archaea and bacteria's identification, encompassing 47 001 sequences, all precisely identified at species level. In addition, a MIMt2.0 version was created with only curated sequences from RefSeq Targeted loci with 32 086 sequences. MIMt aims to be updated twice a year to include all newly sequenced species. We evaluated MIMt against Greengenes, RDP, GTDB and SILVA in terms of sequence distribution and taxonomic assignments accuracy. Our results showed that MIMt contains less redundancy, and despite being 20 to 500 times smaller than existing databases, outperforms them in completeness and taxonomic accuracy, enabling more precise assignments at lower taxonomic ranks and thus, significantly improving species-level identification.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"88"},"PeriodicalIF":6.2,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martina Kracmarova-Farren, Eliska Alexova, Anezka Kodatova, Filip Mercl, Jirina Szakova, Pavel Tlustos, Katerina Demnerova, Hana Stiborova
{"title":"Biochar-induced changes in soil microbial communities: a comparison of two feedstocks and pyrolysis temperatures.","authors":"Martina Kracmarova-Farren, Eliska Alexova, Anezka Kodatova, Filip Mercl, Jirina Szakova, Pavel Tlustos, Katerina Demnerova, Hana Stiborova","doi":"10.1186/s40793-024-00631-z","DOIUrl":"10.1186/s40793-024-00631-z","url":null,"abstract":"<p><strong>Background: </strong>The application of a biochar in agronomical soil offers a dual benefit of improving soil quality and sustainable waste recycling. However, utilizing new organic waste sources requires exploring the biochar's production conditions and application parameters. Woodchips (W) and bone-meat residues (BM) after mechanical deboning from a poultry slaughterhouse were subjected to pyrolysis at 300 °C and 500 °C and applied to cambisol and luvisol soils at ratios of 2% and 5% (w/w).</p><p><strong>Results: </strong>Initially, the impact of these biochar amendments on soil prokaryotes was studied over the course of one year. The influence of biochar variants was further studied on prokaryotes and fungi living in the soil, rhizosphere, and roots of Triticum aestivum L., as well as on soil enzymatic activity. Feedstock type, pyrolysis temperature, application dose, and soil type all played significant roles in shaping both soil and endophytic microbial communities. BM treated at a lower pyrolysis temperature of 300 °C increased the relative abundance of Pseudomonadota while causing a substantial decrease in soil microbial diversity. Conversely, BM prepared at 500 °C favored the growth of microbes known for their involvement in various nutrient cycles. The W biochar, especially when pyrolysed at 500 °C, notably affected microbial communities, particularly in acidic cambisol compared to luvisol. In cambisol, biochar treatments had a significant impact on prokaryotic root endophytes of T. aestivum L. Additionally, variations in prokaryotic community structure of the rhizosphere depended on the increasing distance from the root system (2, 4, and 6 mm). The BM biochar enhanced the activity of acid phosphatase, whereas the W biochar increased the activity of enzymes involved in the carbon cycle (β-glucosidase, β-xylosidase, and β-N-acetylglucosaminidase).</p><p><strong>Conclusions: </strong>These results collectively suggest, that under appropriate production conditions, biochar can exert a positive influence on soil microorganisms, with their response closely tied to the biochar feedstock composition. Such insights are crucial for optimizing biochar application in agricultural practices to enhance soil health.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"87"},"PeriodicalIF":6.2,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanling Wei, Mingchao Ma, Xin Jiang, Fangang Meng, Fengming Cao, Huijun Chen, Dawei Guan, Li Li, Jun Li
{"title":"Soil P-stimulating bacterial communities: response and effect assessment of long-term fertilizer and rhizobium inoculant application.","authors":"Wanling Wei, Mingchao Ma, Xin Jiang, Fangang Meng, Fengming Cao, Huijun Chen, Dawei Guan, Li Li, Jun Li","doi":"10.1186/s40793-024-00633-x","DOIUrl":"10.1186/s40793-024-00633-x","url":null,"abstract":"<p><strong>Background: </strong>Phosphorus (P) plays a vital role in plant growth. The pqqC and phoD genes serve as molecular markers for inorganic and organic P breakdown, respectively. However, the understanding of how P-mobilizing bacteria in soil respond to long-term fertilization and rhizobium application is limited. Herein, soil that had been treated with fertilizer and rhizobium for 10 years was collected to investigate the characteristics of P-mobilizing bacterial communities. Five treatments were included: no fertilization (CK), phosphorus fertilizer (P), urea + potassium fertilizer (NK), NPK, and PK + Bradyrhizobium japonicum 5821 (PK + R).</p><p><strong>Results: </strong>The soybean nodule dry weight was highest in the P treatment (1.93 g), while the soybean yield peaked in the PK + R treatment (3025.33 kg ha<sup>- 1</sup>). The abundance of the pqqC gene increased in the rhizosphere soil at the flowering-podding stage and in the bulk soil at the maturity stage under the P treatment, while its abundance increased in the bulk soil at the flowering-podding stage and in the rhizosphere soil at the maturity stage under the PK + R treatment. The abundance of the phoD gene was enhanced in the bulk soil at the flowering-podding stage under the PK + R treatment. The Shannon and Ace indexes of pqqC- and phoD-harboring bacteria were higher in the rhizosphere soil at maturity under the PK + R treatment compared to other treatments. Furthermore, a comprehensive analysis of the neutral community model and co-occurrence pattern demonstrated that the application of P fertilizer alone led to an increase in the distribution and dynamic movement of pqqC-harboring bacteria, but resulted in a decrease in complexity of network structure. On the other hand, rhizobium inoculation enhanced the distribution and dynamic movement of phoD-harboring bacteria, as well as the stability and complexity of the network structure. Pseudomonas and Nitrobacter, as well as Steptomyces, Stella, and Nonomuraea, may be crucial genera regulating the composition and function of pqqC- and phoD-harboring communities, respectively.</p><p><strong>Conclusions: </strong>These findings affirm the crucial role of fertilization and rhizobium inoculation in regulating pqqC- and phoD-harboring bacterial communities, and highlight the significance of long-term phosphate-only fertilization and rhizobium inoculation in enhancing dissolved inorganic phosphorus and mineralized organophosphorus, respectively.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"86"},"PeriodicalIF":5.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}